skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Access Control in the Era of Big-Data Driven Models and Simulations
In today's mobile-first, cloud-enabled world, where simulation-enabled training is designed for use anywhere and from multiple different types of devices, new paradigms are needed to control access to sensitive data. Large, distributed data sets sourced from a wide-variety of sensors require advanced approaches to authorizations and access control (AC). Motivated by large-scale, publicized data breaches and data privacy laws, data protection policies and fine-grained AC mechanisms are an imperative in data intensive simulation systems. Although the public may suffer security incident fatigue, there are significant impacts to corporations and government organizations in the form of settlement fees and senior executive dismissal. This paper presents an analysis of the challenges to controlling access to big data sets. Implementation guidelines are provided based upon new attribute-based access control (ABAC) standards. Best practices start with AC for the security of large data sets processed by models and simulations (M&S). Currently widely supported eXtensible Access Control Markup Language (XACML) is the predominant framework for big data ABAC. The more recently developed Next Generation Access Control (NGAC) standard addresses additional areas in securing distributed, multi-owner big data sets. We present a comparison and evaluation of standards and technologies for different simulation data protection requirements. A concrete example is included to illustrate the differences. The example scenario is based upon synthetically generated very sensitive health care data combined with less sensitive data. This model data set is accessed by representative groups with a range of trust from highly-trusted roles to general users. The AC security challenges and approaches to mitigate risk are discussed.  more » « less
Award ID(s):
1723587
PAR ID:
10161195
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Interservice/Industry Training, Simulation and Education Conference (I/ITSEC)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is an increasing demand for processing large volumes of unstructured data for a wide variety of applications. However, protection measures for these big data sets are still in their infancy, which could lead to significant security and privacy issues. Attribute-based access control (ABAC) provides a dynamic and flexible solution that is effective for mediating access. We analyzed and implemented a prototype application of ABAC to large dataset processing in Amazon Web Services, using open-source versions of Apache Hadoop, Ranger, and Atlas. The Hadoop ecosystem is one of the most popular frameworks for large dataset processing and storage and is adopted by major cloud service providers. We conducted a rigorous analysis of cybersecurity in implementing ABAC policies in Hadoop, including developing a synthetic dataset of information at multiple sensitivity levels that realistically represents healthcare and connected social media data. We then developed Apache Spark programs that extract, connect, and transform data in a manner representative of a realistic use case. Our result is a framework for securing big data. Applying this framework ensures that serious cybersecurity concerns are addressed. We provide details of our analysis and experimentation code in a GitHub repository for further research by the community. 
    more » « less
  2. Smart homes are interconnected homes in which a wide variety of digital devices with limited resources communicate with multiple users and among themselves using multiple protocols. The deployment of resource-limited devices and the use of a wide range of technologies expand the attack surface and position the smart home as a target for many potential security threats. Access control is among the top security challenges in smart home IoT. Several access control models have been developed or adapted for IoT in general, with a few specifically designed for the smart home IoT domain. Most of these models are built on the role-based access control (RBAC) model or the attribute-based access control (ABAC) model. However, recently some researchers demonstrated that the need arises for a hybrid model combining ABAC and RBAC, thereby incorporating the benefits of both models to better meet IoT access control challenges in general and smart homes requirements in particular. In this paper, we used two approaches to develop two different hybrid models for smart home IoT. We followed a role-centric approach and an attribute-centric approach to develop HyBAC RC and HyBAC AC , respectively. We formally define these models and illustrate their features through a use case scenario demonstration. We further provide a proof-of-concept implementation for each model in Amazon Web Services (AWS) IoT platform. Finally, we conduct a theoretical comparison between the two models proposed in this paper in addition to the EGRBAC model (RBAC model for smart home IoT) and HABAC model (ABAC model for smart home IoT), which were previously developed to meet smart homes’ challenges. 
    more » « less
  3. Smart homes are interconnected homes in which a wide variety of digital devices with limited resources communicate with multiple users and among themselves using multiple protocols. The deployment of resource-limited devices and the use of a wide range of technologies expand the attack surface and position the smart home as a target for many potential security threats. Access control is among the top security challenges in smart home IoT. Several access control models have been developed or adapted for IoT in general, with a few specifically designed for the smart home IoT domain. Most of these models are built on the role-based access control (RBAC) model or the attribute-based access control (ABAC) model. However, recently some researchers demonstrated that the need arises for a hybrid model combining ABAC and RBAC, thereby incorporating the benefits of both models to better meet IoT access control challenges in general and smart homes requirements in particular. In this paper, we used two approaches to develop two different hybrid models for smart home IoT. We followed a role-centric approach and an attribute-centric approach to develop HyBAC RC and HyBAC AC , respectively. We formally define these models and illustrate their features through a use case scenario demonstration. We further provide a proof-of-concept implementation for each model in Amazon Web Services (AWS) IoT platform. Finally, we conduct a theoretical comparison between the two models proposed in this paper in addition to the EGRBAC model (RBAC model for smart home IoT) and HABAC model (ABAC model for smart home IoT), which were previously developed to meet smart homes’ challenges. 
    more » « less
  4. Creating effective access control policies is a significant challenge to many organizations. Over-privilege increases security risk from compromised credentials, insider threats, and accidental misuse. Under-privilege prevents users from performing their duties. Policies must balance between these competing goals of minimizing under-privilege vs. over-privilege. The Attribute Based Access Control (ABAC) model has been gaining popularity in recent years because of its advantages in granularity, flexibility, and usability. ABAC allows administrators to create policies based on attributes of users, operations, resources, and the environment. However, in practice, it is often very difficult to create effective ABAC policies in terms of minimizing under-privilege and over-privilege especially for large and complex systems because their ABAC privilege spaces are typically gigantic. In this paper, we take a rule mining approach to mine systems' audit logs for automatically generating ABAC policies which minimize both under-privilege and over-privilege. We propose a rule mining algorithm for creating ABAC policies with rules, a policy scoring algorithm for evaluating ABAC policies from the least privilege perspective, and performance optimization methods for dealing with the challenges of large ABAC privilege spaces. Using a large dataset of 4.7 million Amazon Web Service (AWS) audit log events, we demonstrate that our automated approach can effectively generate least privilege ABAC policies, and can generate policies with less over-privilege and under-privilege than a Role Based Access Control (RBAC) approach. Overall, we hope our work can help promote a wider and faster deployment of the ABAC model, and can help unleash the advantages of ABAC to better protect large and complex computing systems. 
    more » « less
  5. Edge and Fog computing paradigms are used to process big data generated by the increasing number of IoT devices. These paradigms have enabled cities to become smarter in various aspects via real-time data-driven applications. While these have addressed some flaws of cloud computing some challenges remain particularly in terms of privacy and security. We create a testbed based on a distributed processing platform called the Information flow of Things (IFoT) middleware. We briefly describe a decentralized traffic speed query and routing service implemented on this framework testbed. We configure the testbed to test counter measure systems that aim to address the security challenges faced by prior paradigms. Using this testbed, we investigate a novel decentralized anomaly detection approach for time-sensitive distributed smart transportation systems 
    more » « less