skip to main content


Title: Access Control in the Era of Big-Data Driven Models and Simulations
In today's mobile-first, cloud-enabled world, where simulation-enabled training is designed for use anywhere and from multiple different types of devices, new paradigms are needed to control access to sensitive data. Large, distributed data sets sourced from a wide-variety of sensors require advanced approaches to authorizations and access control (AC). Motivated by large-scale, publicized data breaches and data privacy laws, data protection policies and fine-grained AC mechanisms are an imperative in data intensive simulation systems. Although the public may suffer security incident fatigue, there are significant impacts to corporations and government organizations in the form of settlement fees and senior executive dismissal. This paper presents an analysis of the challenges to controlling access to big data sets. Implementation guidelines are provided based upon new attribute-based access control (ABAC) standards. Best practices start with AC for the security of large data sets processed by models and simulations (M&S). Currently widely supported eXtensible Access Control Markup Language (XACML) is the predominant framework for big data ABAC. The more recently developed Next Generation Access Control (NGAC) standard addresses additional areas in securing distributed, multi-owner big data sets. We present a comparison and evaluation of standards and technologies for different simulation data protection requirements. A concrete example is included to illustrate the differences. The example scenario is based upon synthetically generated very sensitive health care data combined with less sensitive data. This model data set is accessed by representative groups with a range of trust from highly-trusted roles to general users. The AC security challenges and approaches to mitigate risk are discussed.  more » « less
Award ID(s):
1723587
NSF-PAR ID:
10161195
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Interservice/Industry Training, Simulation and Education Conference (I/ITSEC)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is an increasing demand for processing large volumes of unstructured data for a wide variety of applications. However, protection measures for these big data sets are still in their infancy, which could lead to significant security and privacy issues. Attribute-based access control (ABAC) provides a dynamic and flexible solution that is effective for mediating access. We analyzed and implemented a prototype application of ABAC to large dataset processing in Amazon Web Services, using open-source versions of Apache Hadoop, Ranger, and Atlas. The Hadoop ecosystem is one of the most popular frameworks for large dataset processing and storage and is adopted by major cloud service providers. We conducted a rigorous analysis of cybersecurity in implementing ABAC policies in Hadoop, including developing a synthetic dataset of information at multiple sensitivity levels that realistically represents healthcare and connected social media data. We then developed Apache Spark programs that extract, connect, and transform data in a manner representative of a realistic use case. Our result is a framework for securing big data. Applying this framework ensures that serious cybersecurity concerns are addressed. We provide details of our analysis and experimentation code in a GitHub repository for further research by the community.

     
    more » « less
  2. Smart homes are interconnected homes in which a wide variety of digital devices with limited resources communicate with multiple users and among themselves using multiple protocols. The deployment of resource-limited devices and the use of a wide range of technologies expand the attack surface and position the smart home as a target for many potential security threats. Access control is among the top security challenges in smart home IoT. Several access control models have been developed or adapted for IoT in general, with a few specifically designed for the smart home IoT domain. Most of these models are built on the role-based access control (RBAC) model or the attribute-based access control (ABAC) model. However, recently some researchers demonstrated that the need arises for a hybrid model combining ABAC and RBAC, thereby incorporating the benefits of both models to better meet IoT access control challenges in general and smart homes requirements in particular. In this paper, we used two approaches to develop two different hybrid models for smart home IoT. We followed a role-centric approach and an attribute-centric approach to develop HyBAC RC and HyBAC AC , respectively. We formally define these models and illustrate their features through a use case scenario demonstration. We further provide a proof-of-concept implementation for each model in Amazon Web Services (AWS) IoT platform. Finally, we conduct a theoretical comparison between the two models proposed in this paper in addition to the EGRBAC model (RBAC model for smart home IoT) and HABAC model (ABAC model for smart home IoT), which were previously developed to meet smart homes’ challenges. 
    more » « less
  3. Smart homes are interconnected homes in which a wide variety of digital devices with limited resources communicate with multiple users and among themselves using multiple protocols. The deployment of resource-limited devices and the use of a wide range of technologies expand the attack surface and position the smart home as a target for many potential security threats. Access control is among the top security challenges in smart home IoT. Several access control models have been developed or adapted for IoT in general, with a few specifically designed for the smart home IoT domain. Most of these models are built on the role-based access control (RBAC) model or the attribute-based access control (ABAC) model. However, recently some researchers demonstrated that the need arises for a hybrid model combining ABAC and RBAC, thereby incorporating the benefits of both models to better meet IoT access control challenges in general and smart homes requirements in particular. In this paper, we used two approaches to develop two different hybrid models for smart home IoT. We followed a role-centric approach and an attribute-centric approach to develop HyBAC RC and HyBAC AC , respectively. We formally define these models and illustrate their features through a use case scenario demonstration. We further provide a proof-of-concept implementation for each model in Amazon Web Services (AWS) IoT platform. Finally, we conduct a theoretical comparison between the two models proposed in this paper in addition to the EGRBAC model (RBAC model for smart home IoT) and HABAC model (ABAC model for smart home IoT), which were previously developed to meet smart homes’ challenges. 
    more » « less
  4. Obeid, I. (Ed.)
    The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do not have access to such data resources must rely on techniques in which existing models can be adapted to new datasets [6]. A preliminary version of this breast corpus release was tested in a pilot study using a baseline machine learning system, ResNet18 [7], that leverages several open-source Python tools. The pilot corpus was divided into three sets: train, development, and evaluation. Portions of these slides were manually annotated [1] using the nine labels in Table 1 [8] to identify five to ten examples of pathological features on each slide. Not every pathological feature is annotated, meaning excluded areas can include focuses particular to these labels that are not used for training. A summary of the number of patches within each label is given in Table 2. To maintain a balanced training set, 1,000 patches of each label were used to train the machine learning model. Throughout all sets, only annotated patches were involved in model development. The performance of this model in identifying all the patches in the evaluation set can be seen in the confusion matrix of classification accuracy in Table 3. The highest performing labels were background, 97% correct identification, and artifact, 76% correct identification. A correlation exists between labels with more than 6,000 development patches and accurate performance on the evaluation set. Additionally, these results indicated a need to further refine the annotation of invasive ductal carcinoma (“indc”), inflammation (“infl”), nonneoplastic features (“nneo”), normal (“norm”) and suspicious (“susp”). This pilot experiment motivated changes to the corpus that will be discussed in detail in this poster presentation. To increase the accuracy of the machine learning model, we modified how we addressed underperforming labels. One common source of error arose with how non-background labels were converted into patches. Large areas of background within other labels were isolated within a patch resulting in connective tissue misrepresenting a non-background label. In response, the annotation overlay margins were revised to exclude benign connective tissue in non-background labels. Corresponding patient reports and supporting immunohistochemical stains further guided annotation reviews. The microscopic diagnoses given by the primary pathologist in these reports detail the pathological findings within each tissue site, but not within each specific slide. The microscopic diagnoses informed revisions specifically targeting annotated regions classified as cancerous, ensuring that the labels “indc” and “dcis” were used only in situations where a micropathologist diagnosed it as such. Further differentiation of cancerous and precancerous labels, as well as the location of their focus on a slide, could be accomplished with supplemental immunohistochemically (IHC) stained slides. When distinguishing whether a focus is a nonneoplastic feature versus a cancerous growth, pathologists employ antigen targeting stains to the tissue in question to confirm the diagnosis. For example, a nonneoplastic feature of usual ductal hyperplasia will display diffuse staining for cytokeratin 5 (CK5) and no diffuse staining for estrogen receptor (ER), while a cancerous growth of ductal carcinoma in situ will have negative or focally positive staining for CK5 and diffuse staining for ER [9]. Many tissue samples contain cancerous and non-cancerous features with morphological overlaps that cause variability between annotators. The informative fields IHC slides provide could play an integral role in machine model pathology diagnostics. Following the revisions made on all the annotations, a second experiment was run using ResNet18. Compared to the pilot study, an increase of model prediction accuracy was seen for the labels indc, infl, nneo, norm, and null. This increase is correlated with an increase in annotated area and annotation accuracy. Model performance in identifying the suspicious label decreased by 25% due to the decrease of 57% in the total annotated area described by this label. A summary of the model performance is given in Table 4, which shows the new prediction accuracy and the absolute change in error rate compared to Table 3. The breast tissue subset we are developing includes 3,505 annotated breast pathology slides from 296 patients. The average size of a scanned SVS file is 363 MB. The annotations are stored in an XML format. A CSV version of the annotation file is also available which provides a flat, or simple, annotation that is easy for machine learning researchers to access and interface to their systems. Each patient is identified by an anonymized medical reference number. Within each patient’s directory, one or more sessions are identified, also anonymized to the first of the month in which the sample was taken. These sessions are broken into groupings of tissue taken on that date (in this case, breast tissue). A deidentified patient report stored as a flat text file is also available. Within these slides there are a total of 16,971 total annotated regions with an average of 4.84 annotations per slide. Among those annotations, 8,035 are non-cancerous (normal, background, null, and artifact,) 6,222 are carcinogenic signs (inflammation, nonneoplastic and suspicious,) and 2,714 are cancerous labels (ductal carcinoma in situ and invasive ductal carcinoma in situ.) The individual patients are split up into three sets: train, development, and evaluation. Of the 74 cancerous patients, 20 were allotted for both the development and evaluation sets, while the remain 34 were allotted for train. The remaining 222 patients were split up to preserve the overall distribution of labels within the corpus. This was done in hope of creating control sets for comparable studies. Overall, the development and evaluation sets each have 80 patients, while the training set has 136 patients. In a related component of this project, slides from the Fox Chase Cancer Center (FCCC) Biosample Repository (https://www.foxchase.org/research/facilities/genetic-research-facilities/biosample-repository -facility) are being digitized in addition to slides provided by Temple University Hospital. This data includes 18 different types of tissue including approximately 38.5% urinary tissue and 16.5% gynecological tissue. These slides and the metadata provided with them are already anonymized and include diagnoses in a spreadsheet with sample and patient ID. We plan to release over 13,000 unannotated slides from the FCCC Corpus simultaneously with v1.0.0 of TUDP. Details of this release will also be discussed in this poster. Few digitally annotated databases of pathology samples like TUDP exist due to the extensive data collection and processing required. The breast corpus subset should be released by November 2021. By December 2021 we should also release the unannotated FCCC data. We are currently annotating urinary tract data as well. We expect to release about 5,600 processed TUH slides in this subset. We have an additional 53,000 unprocessed TUH slides digitized. Corpora of this size will stimulate the development of a new generation of deep learning technology. In clinical settings where resources are limited, an assistive diagnoses model could support pathologists’ workload and even help prioritize suspected cancerous cases. ACKNOWLEDGMENTS This material is supported by the National Science Foundation under grants nos. CNS-1726188 and 1925494. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. REFERENCES [1] N. Shawki et al., “The Temple University Digital Pathology Corpus,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York City, New York, USA: Springer, 2020, pp. 67 104. https://www.springer.com/gp/book/9783030368432. [2] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning.” Major Research Instrumentation (MRI), Division of Computer and Network Systems, Award No. 1726188, January 1, 2018 – December 31, 2021. https://www. isip.piconepress.com/projects/nsf_dpath/. [3] A. Gulati et al., “Conformer: Convolution-augmented Transformer for Speech Recognition,” in Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH), 2020, pp. 5036-5040. https://doi.org/10.21437/interspeech.2020-3015. [4] C.-J. Wu et al., “Machine Learning at Facebook: Understanding Inference at the Edge,” in Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA), 2019, pp. 331–344. https://ieeexplore.ieee.org/document/8675201. [5] I. Caswell and B. Liang, “Recent Advances in Google Translate,” Google AI Blog: The latest from Google Research, 2020. [Online]. Available: https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html. [Accessed: 01-Aug-2021]. [6] V. Khalkhali, N. Shawki, V. Shah, M. Golmohammadi, I. Obeid, and J. Picone, “Low Latency Real-Time Seizure Detection Using Transfer Deep Learning,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2021, pp. 1 7. https://www.isip. piconepress.com/publications/conference_proceedings/2021/ieee_spmb/eeg_transfer_learning/. [7] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning,” Philadelphia, Pennsylvania, USA, 2020. https://www.isip.piconepress.com/publications/reports/2020/nsf/mri_dpath/. [8] I. Hunt, S. Husain, J. Simons, I. Obeid, and J. Picone, “Recent Advances in the Temple University Digital Pathology Corpus,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2019, pp. 1–4. https://ieeexplore.ieee.org/document/9037859. [9] A. P. Martinez, C. Cohen, K. Z. Hanley, and X. (Bill) Li, “Estrogen Receptor and Cytokeratin 5 Are Reliable Markers to Separate Usual Ductal Hyperplasia From Atypical Ductal Hyperplasia and Low-Grade Ductal Carcinoma In Situ,” Arch. Pathol. Lab. Med., vol. 140, no. 7, pp. 686–689, Apr. 2016. https://doi.org/10.5858/arpa.2015-0238-OA. 
    more » « less
  5. Creating effective access control policies is a significant challenge to many organizations. Over-privilege increases security risk from compromised credentials, insider threats, and accidental misuse. Under-privilege prevents users from performing their duties. Policies must balance between these competing goals of minimizing under-privilege vs. over-privilege. The Attribute Based Access Control (ABAC) model has been gaining popularity in recent years because of its advantages in granularity, flexibility, and usability. ABAC allows administrators to create policies based on attributes of users, operations, resources, and the environment. However, in practice, it is often very difficult to create effective ABAC policies in terms of minimizing under-privilege and over-privilege especially for large and complex systems because their ABAC privilege spaces are typically gigantic. In this paper, we take a rule mining approach to mine systems' audit logs for automatically generating ABAC policies which minimize both under-privilege and over-privilege. We propose a rule mining algorithm for creating ABAC policies with rules, a policy scoring algorithm for evaluating ABAC policies from the least privilege perspective, and performance optimization methods for dealing with the challenges of large ABAC privilege spaces. Using a large dataset of 4.7 million Amazon Web Service (AWS) audit log events, we demonstrate that our automated approach can effectively generate least privilege ABAC policies, and can generate policies with less over-privilege and under-privilege than a Role Based Access Control (RBAC) approach. Overall, we hope our work can help promote a wider and faster deployment of the ABAC model, and can help unleash the advantages of ABAC to better protect large and complex computing systems. 
    more » « less