skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Specification of Optical Surfaces with Anisotropic Mid- Spatial Frequency Errors
Mid-spatial frequency (MSF) errors impact optical performance. Conventional surface specification methods assume isotropy, which gives misleading results for surfaces with anisotropic errors. We propose an alternate surface specification method. © 2019 The Author(s) OCIS codes: (120.0120) Instrumentation, measurement, and metrology; (220.0220) Optical design and fabrication.  more » « less
Award ID(s):
1822049 1338877
PAR ID:
10161258
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Design and Fabrication Congress 2019 (Freeform, OFT) © OSA 2019
Volume:
OM4A.5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We describe the development of a data library of mid-spatial frequency surface errors for optical components. This resource enables better understanding of specification of mid-spatial frequency surface errors and their connections to optical performance. 
    more » « less
  2. We describe the development of a data library of mid-spatial frequency surface errors for optical components. This resource enables better understanding of specification of mid-spatial frequency surface errors and their connections to optical performance. 
    more » « less
  3. Specification and tolerancing of surfaces with mid-spatial frequency (MSF) errors are challenging and require new tools to augment simple surface statistics to better represent the structured characteristics of these errors. A novel surface specification method is developed by considering the structured and anisotropic nature of MSF errors and their impact on the modulation transfer function (MTF). The result is an intuitive plot of bandlimited RMS error values in polar coordinates which contains the surface error anisotropy information and enables an easy to understand acceptance criterion. Methods, application examples, and the connection of this surface specification approach to the MTF are discussed. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
    more » « less
  4. Sub-aperture manufacturing creates anisotropic surface errors, and modulation transfer functions (MTF) not well represented by 1D cross-sections. We present a 1D ‘non-directional’ MTF for specification and characterization of optical surface errors. © 2019 The Author(s) OCIS codes: (110.4100) Modulation transfer function; (220.0220) Optical design and fabrication. 
    more » « less
  5. We apply the Nb=1 solution of the Rapidly Decaying Fourier series to fit mid-spatial frequency surface errors. Using this basis enables definition of sharp spatial frequency bandlimits for mid-spatial frequency specification of optical surfaces. 
    more » « less