In this work, we present a methodology for predicting the optical performance impacts of random and structured MSF surface errors using pupil-difference probability distribution (PDPD) moments. In addition, we show that, for random mid-spatial frequency (MSF) surface errors, performance estimates from the PDPD moments converge to performance estimates that assume random statistics. Finally, we apply these methods to several MSF surface errors with different distributions and compare estimated optical performance values to predictions based on earlier methods assuming random error distributions.
more »
« less
Simple methods for estimating the performance and specification of optical components with anisotropic mid-spatial frequency surface errors
Specification and tolerancing of surfaces with mid-spatial frequency (MSF) errors are challenging and require new tools to augment simple surface statistics to better represent the structured characteristics of these errors. A novel surface specification method is developed by considering the structured and anisotropic nature of MSF errors and their impact on the modulation transfer function (MTF). The result is an intuitive plot of bandlimited RMS error values in polar coordinates which contains the surface error anisotropy information and enables an easy to understand acceptance criterion. Methods, application examples, and the connection of this surface specification approach to the MTF are discussed. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
more »
« less
- PAR ID:
- 10161240
- Date Published:
- Journal Name:
- Optics express
- Volume:
- 27
- Issue:
- 22
- ISSN:
- 1094-4087
- Page Range / eLocation ID:
- 32709-32721
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sub-aperture manufacturing creates anisotropic surface errors, and modulation transfer functions (MTF) not well represented by 1D cross-sections. We present a 1D ‘non-directional’ MTF for specification and characterization of optical surface errors. © 2019 The Author(s) OCIS codes: (110.4100) Modulation transfer function; (220.0220) Optical design and fabrication.more » « less
-
Mid-spatial frequency (MSF) errors impact optical performance. Conventional surface specification methods assume isotropy, which gives misleading results for surfaces with anisotropic errors. We propose an alternate surface specification method. © 2019 The Author(s) OCIS codes: (120.0120) Instrumentation, measurement, and metrology; (220.0220) Optical design and fabrication.more » « less
-
There are a variety of common situations in which specification of a onedimensional modulation transfer function (MTF) or two orthogonal profiles of the 2D MTF are not adequate descriptions of the image quality performance of an optical system. These include systems with an asymmetric on-axis impulse response, systems with off-axis aberrations, systems with surfaces that include mid-spatial frequency errors, and freeform systems. In this paper, we develop the concept of the Minimum Modulation Curve (MMC). Starting with the two-dimensional MTF in polar form, the minimum MTF for any azimuth angle is plotted as a function of the radial spatial frequency. This can be presented in a familiar form similar to an MTF curve and is useful in the context of guaranteeing that a given MTF specification is met for any possible orientation of spatial frequencies in the image. In this way, an MMC may be of value in specifying the required performance of an optical system. We illustrate application of the MMC using profile data for surfaces with midspatial frequency errors. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreementmore » « less
-
Standard surface specifications for mid-spatial frequency (MSF) errors do not capture complex surface topography and often lose critical information by making simplifying assumptions about surface distribution and statistics. As a result, it is challenging to link surface specifications with optical performance. In this work, we present use of the pupil-difference probability distribution (PDPD) moments to assess general MSF surface errors and show how the PDPD moments relate to the relative modulation.more » « less
An official website of the United States government

