- Award ID(s):
- 1815561
- PAR ID:
- 10161314
- Date Published:
- Journal Name:
- IEEE/CVF International Conference on Computer Vision (ICCV)
- Page Range / eLocation ID:
- 9884 to 9893
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Supervised dimensionality reduction for sequence data learns a transformation that maps the observations in sequences onto a low-dimensional subspace by maximizing the separability of sequences in different classes. It is typically more challenging than conventional dimensionality reduction for static data, because measuring the separability of sequences involves non-linear procedures to manipulate the temporal structures. In this paper, we propose a linear method, called Order-preserving Wasserstein Discriminant Analysis (OWDA), and its deep extension, namely DeepOWDA, to learn linear and non-linear discriminative subspace for sequence data, respectively. We construct novel separability measures between sequence classes based on the order-preserving Wasserstein (OPW) distance to capture the essential differences among their temporal structures. Specifically, for each class, we extract the OPW barycenter and construct the intra-class scatter as the dispersion of the training sequences around the barycenter. The inter-class distance is measured as the OPW distance between the corresponding barycenters. We learn the linear and non-linear transformations by maximizing the inter-class distance and minimizing the intra-class scatter. In this way, the proposed OWDA and DeepOWDA are able to concentrate on the distinctive differences among classes by lifting the geometric relations with temporal constraints. Experiments on four 3D action recognition datasets show the effectiveness of OWDA and DeepOWDA.more » « less
-
null (Ed.)We consider the problem of estimating the Wasserstein distance between the empirical measure and a set of probability measures whose expectations over a class of functions (hypothesis class) are constrained. If this class is sufficiently rich to characterize a particular distribution (e.g., all Lipschitz functions), then our formulation recovers the Wasserstein distance to such a distribution. We establish a strong duality result that generalizes the celebrated Kantorovich-Rubinstein duality. We also show that our formulation can be used to beat the curse of dimensionality, which is well known to affect the rates of statistical convergence of the empirical Wasserstein distance. In particular, examples of infinite-dimensional hypothesis classes are presented, informed by a complex correlation structure, for which it is shown that the empirical Wasserstein distance to such classes converges to zero at the standard parametric rate. Our formulation provides insights that help clarify why, despite the curse of dimensionality, the Wasserstein distance enjoys favorable empirical performance across a wide range of statistical applications.more » « less
-
Abstract One key challenge encountered in single-cell data clustering is to combine clustering results of data sets acquired from multiple sources. We propose to represent the clustering result of each data set by a Gaussian mixture model (GMM) and produce an integrated result based on the notion of Wasserstein barycenter. However, the precise barycenter of GMMs, a distribution on the same sample space, is computationally infeasible to solve. Importantly, the barycenter of GMMs may not be a GMM containing a reasonable number of components. We thus propose to use the minimized aggregated Wasserstein (MAW) distance to approximate the Wasserstein metric and develop a new algorithm for computing the barycenter of GMMs under MAW. Recent theoretical advances further justify using the MAW distance as an approximation for the Wasserstein metric between GMMs. We also prove that the MAW barycenter of GMMs has the same expectation as the Wasserstein barycenter. Our proposed algorithm for clustering integration scales well with the data dimension and the number of mixture components, with complexity independent of data size. We demonstrate that the new method achieves better clustering results on several single-cell RNA-seq data sets than some other popular methods.
-
Low-dimensional discriminative representations enhance machine learning methods in both performance and complexity. This has motivated supervised dimensionality reduction (DR), which transforms high-dimensional data into a discriminative subspace. Most DR methods require data to be i.i.d. However, in some domains, data naturally appear in sequences, where the observations are temporally correlated. We propose a DR method, namely, latent temporal linear discriminant analysis (LT-LDA), to learn low-dimensional temporal representations. We construct the separability among sequence classes by lifting the holistic temporal structures, which are established based on temporal alignments and may change in different subspaces. We jointly learn the subspace and the associated latent alignments by optimizing an objective that favors easily separable temporal structures. We show that this objective is connected to the inference of alignments and thus allows for an iterative solution. We provide both theoretical insight and empirical evaluations on several real-world sequence datasets to show the applicability of our method.more » « less
-
Learning distances that operate directly on multidimensional sequences is challenging because such distances are structural by nature and the vectors in sequences are not independent. Generally, distances for sequences heavily depend on the ground metric between the vectors in sequences. We propose to learn the distance for sequences through learning a ground Mahalanobis metric for the vectors in sequences. The learning samples are sequences of vectors for which how the ground metric between vectors induces the overall distance is given, and the objective is that the distance induced by the learned ground metric produces large values for sequences from different classes and small values for those from the same class. We formulate the metric as a parameter of the distance, bring closer each sequence to an associated virtual sequence w.r.t. the distance to reduce the number of constraints, and develop a general iterative solution for any ground-metric-based sequence distance. Experiments on several sequence datasets demonstrate the effectiveness and efficiency of our method.more » « less