skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Heterogeneous Device Arrangements Affect Both Partners’ Experiences in Collaborative Media Spaces
HCI has a history of developing rich media spaces to support collaboration between remote parties and testing such systems in investigations where each partner uses the same device setup (i.e., homogeneous device arrangements). In this work, we contribute an infrastructure that supports connection between a projector-camera media space and commodity mobile devices (i.e., tablets, smartphones). Deploying three device arrangements using this infrastructure, we conducted a mixed-methods investigation of device heterogeneity in media space collaboration. We found that the commodity devices provided a worse user experience, though this effect was moderated in some collaboration tasks. Collaborating with a partner who was using a commodity device also negatively affected the experience of the other user. We report specific collaboration concerns introduced by device heterogeneity. Based on these findings, we offer implications for the design of media spaces that use heterogeneous devices.  more » « less
Award ID(s):
1651575 1526085
PAR ID:
10161373
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of Human-Computer Interaction International
Page Range / eLocation ID:
76-98
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Unlike traditional object stores, Augmented Reality (AR) query workloads possess several unique characteristics, such as spatial and visual information. Such workloads are often keyed on a variety of attributes simultaneously, such as device orientation and position, the scene in view, and spatial anchors. The natural mode of user-interaction in these devices triggers queries implicitly based on the field in the user's view at any instant, generating data queries in excess of the device frame rate. Ensuring a smooth user experience in such a scenario requires a systemic solution exploiting the unique characteristics of the AR workloads. For exploration in such contexts, we are presented with a view-maintenance or cache-prefetching problem; how do we download the smallest subset from the server to the mixed reality device such that latency and device space constraints are met? We present a novel data platform - DreamStore, that considers AR queries as first-class queries, and view-maintenance and large-scale analytics infrastructure around this design choice. Through performance experiments on large-scale and query-intensive AR workloads on DreamStore, we show the advantages and the capabilities of our proposed platform. 
    more » « less
  2. Commodity ultra-high-frequency (UHF) RFID authentication systems only provide weak user authentication, as RFID tags can be easily stolen, lost, or cloned by attackers. This paper presents the design and evaluation of SmartRFID, a novel UHF RFID authentication system to promote commodity crypto-less UHF RFID tags for security-sensitive applications. SmartRFID explores extremely popular smart devices and requires a legitimate user to enroll his smart device along with his RFID tag. Besides authenticating the RFID tag as usual, SmartRFID verifies whether the user simultaneously possesses the associated smart device with both feature-based machine learning and deep learning techniques. The user is considered authentic if and only if passing the dual verifications. Comprehensive user experiments on commodity smartwatches and RFID devices confirmed the high security and usability of SmartRFID. In particular, SmartRFID achieves a true acceptance rate of above 97.5% and a false acceptance rate of less than 0.7% based on deep learning. In addition, SmartRFID can achieve an average authentication latency of less than 2.21s, which is comparable to inputting a PIN on a door keypad or smartphone. 
    more » « less
  3. IoT devices like smart cameras and speakers provide convenience but can collect sensitive information within private spaces. While research has investigated user perception of comfort with information flows originating from these types of devices, little focus has been given to the role of the sensing hardware in influencing these sentiments. Given the proliferation of trusted execution environments (TEEs) across commodity- and server-class devices, we surveyed 1049 American adults using the Contextual Integrity framework to understand how the inclusion of cloud-based TEEs in IoT ecosystems may influence comfort with data collection and use. We find that cloud-based TEEs significantly increase user comfort across information flows. These increases are more pronounced for devices manufactured by smaller companies and show that cloud-based TEEs can bridge the previously-documented gulfs in user trust between small and large companies. Sentiments around consent, bystander data, and indefinite retention are unaffected by the presence of TEEs, indicating the centrality of these norms. 
    more » « less
  4. Augmented Reality (AR) devices are set apart from other mobile devices by the immersive experience they offer. While the powerful suite of sensors on modern AR devices is necessary for enabling such an immersive experience, they can create unease in bystanders (i.e., those surrounding the device during its use) due to potential bystander data leaks, which is called the bystander privacy problem. In this paper, we propose BystandAR, the first practical system that can effectively protect bystander visual (camera and depth) data in real-time with only on-device processing. BystandAR builds on a key insight that the device user's eye gaze and voice are highly effective indicators for subject/bystander detection in interpersonal interaction, and leverages novel AR capabilities such as eye gaze tracking, wearer-focused microphone, and spatial awareness to achieve a usable frame rate without offloading sensitive information. Through a 16-participant user study,we show that BystandAR correctly identifies and protects 98.14% of bystanders while allowing access to 96.27% of subjects. We accomplish this with average frame rates of 52.6 frames per second without the need to offload unprotected bystander data to another device. 
    more » « less
  5. Augmented Reality (AR) devices are set apart from other mobile devices by the immersive experience they offer. While the powerful suite of sensors on modern AR devices is necessary for enabling such an immersive experience, they can create unease in bystanders (i.e., those surrounding the device during its use) due to potential bystander data leaks, which is called the bystander privacy problem. In this poster, we propose BystandAR, the first practical system that can effectively protect bystander visual (camera and depth) data in real-time with only on-device processing. BystandAR builds on a key insight that the device user's eye gaze and voice are highly effective indicators for subject/bystander detection in interpersonal interaction, and leverages novel AR capabilities such as eye gaze tracking, wearer-focused microphone, and spatial awareness to achieve a usable frame rate without offloading sensitive information. Through a 16-participant user study, we show that BystandAR correctly identifies and protects 98.14% of bystanders while allowing access to 96.27% of subjects. We accomplish this with average frame rates of 52.6 frames per second without the need to offload unprotected bystander data to another device. 
    more » « less