skip to main content


Title: Competing Deformation Mechanisms in Periclase: Implications for Lower Mantle Anisotropy
Seismic anisotropy is observed above the core-mantle boundary in regions of slab subduction and near the margins of Large Low Shear Velocity Provinces (LLSVPs). Ferropericlase is believed to be the second most abundant phase in the lower mantle. As it is rheologically weak, it may be a dominant source for anisotropy in the lowermost mantle. Understanding deformation mechanisms in ferropericlase over a range of pressure and temperature conditions is crucial to interpret seismic anisotropy. The effect of temperature on deformation mechanisms of ferropericlase has been established, but the effects of pressure are still controversial. With the aim to clarify and quantify the effect of pressure on deformation mechanisms, we perform room temperature compression experiments on polycrystalline periclase to 50 GPa. Lattice strains and texture development are modeled using the Elasto-ViscoPlastic Self Consistent method (EVPSC). Based on modeling results, we find that { 110 } ⟨ 1 1 ¯ 0 ⟩ slip is increasingly activated with higher pressure and is fully activated at ~50 GPa. Pressure and temperature have a competing effect on activities of dominant slip systems. An increasing { 100 } ⟨ 011 ⟩ : { 110 } ⟨ 1 1 ¯ 0 ⟩ ratio of slip activity is expected as material moves from cold subduction regions towards hot upwelling region adjacent to LLSVPs. This could explain observed seismic anisotropy in the circum-Pacific region that appears to weaken near margins of LLVSPs.  more » « less
Award ID(s):
1654687
NSF-PAR ID:
10161391
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Minerals
Volume:
9
Issue:
11
ISSN:
2075-163X
Page Range / eLocation ID:
650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ferropericlase is the second most abundant mineral in the Earth’s lower mantle and its mechanical properties have a strong influence on the rheology of this region. Here, we deform polycrystalline MgO, the magnesium end-member of ferropericlase, at conditions ranging from 1.6 to 8.3 GPa and 875–1,270 K. We analyse the flow laws and microstructures of the recovered samples using electron microscopy and compare our observations with predictions from the literature. We identify a first mechanism for samples deformed at 1,270 K, attributed to a regime controlled by grain boundary sliding accommodated by diffusion, and characterized by a small grain size, an absence of texture, and no intracrystalline deformation. At 1,070 K and below, the deformation regime is controlled by dislocations. The samples show a more homogeneous grain size distribution, significant texture, and intracrystalline strains. In this regime, deformation is controlled by the ⟨110⟩{110} slip system and a combined ⟨110⟩{110} and ⟨110⟩{100} slip, depending on pressure and temperature. Based on these results, we propose an updated deformation map for polycrystalline MgO at mantle conditions. The implications for ferropericlase and seismic observations in the Earth’s lower mantle are discussed. 
    more » « less
  2. In recent years there have been several attempts to make the link between mineral properties and seismic anisotropy in the D’’ region but have yet to reach consensus with regards to the dynamics in lower mantle minerals that could give rise to the observed seismic anisotropy. Here, we aim to provide further constraints on the observed long wavelength shear velocity patterns seen in seismic tomography studies. We introduce a forward model of deformation in a subducting slab as it impacts the core mantle boundary (D’’ layer) and proceeds to upwelling at the edge of a simulated LLSVP. By implementing the most recent results from atomistic modeling and high-pressure deformation experiments coupled with a 3-dimensional geodynamic model, we compare the microstructural evolution of an aggregate with a pyrolytic composition to the macroscopically observed seismic anisotropy of the lowermost mantle. We account for topotaxial relations in the forward and reverse phase transitions of MgSiO3-perovskite (Pv) to post-perovskite (pPv) within the slab as well as explore the effects introduced by partial melting near the CMB. Comparisons in the two leading candidate deformation mechanisms in the post-perovskite phase, (001) and (010), are compared. In this study we find that the reverse transition (pPv to Pv) occurs at a depth which is ~ 150 km deeper than that of the forward transition due to increasing temperature near the CMB providing a varying topography of the D’’ discontinuity. Our model also produces good fits with the isotropic velocities of PREM for the bulk lower mantle. When coupled with temperature and pressure dependent forward and reverse phase transitions, a pPv system with dominant (001) slip provides good correlation with the currently observed VSH fast horizontal (~ 1 – 6%) in D’’ and with VSV consistently fast in upwelling areas. Azimuthal variations along the streamline are also investigated showing a symmetry lower than that of the assumed VTI in D’’ introduced by ‘rolling’ effects near the slab’s edge. The addition of 1% partial melting at the CMB is shown to increase S and P wave anisotropy beneath the slab at the base of upwelling with up to ~2.5 & 4.0% P and S wave reductions respectively compared to the global reference. 
    more » « less
  3. SUMMARY

    The seismic anisotropy of the Earth's solid inner core has been the topic of much research. It could be explained by the crystallographic preferred orientation (CPO) developing during convection. The likely phase is hexagonal close-packed iron (hcp), alloyed with nickel and some lighter elements. Here we use high energy synchrotron X-rays to study CPO in Fe-9wt%Si, uniaxially compressed in a diamond anvil cell in radial geometry. The experiments reveal that strong preferred orientation forms in the low-pressure body-centred cubic (bcc) phase that appears to be softer than pure iron. CPO is attributed to dominant {110}<111> slip. The onset of the bcc→hcp transition occurs at a pressure of ≈15 GPa, and the alloy remains in a two phase bcc + hcp state up to 40 GPa. The hcp phase forms first with a distinct {11$\bar{2}$0} maximum perpendicular to compression. Modelling shows that this is a transformation texture, which can be described by Burgers orientation relationship with variant selection. Experimental results suggest that bcc grains oriented with <100> parallel to compression transform into hcp first. The CPO of the hcp changes only slowly during further pressure and deviatoric stress increase at ambient temperature. After heating to 1600 K, a change in the hcp CPO is observed with alignment of (0001) planes perpendicular to compression that can be interpreted as dominant (0001)<11$\bar{2}$0> slip, combined with {10$\bar{1}$2}<$\bar{1}$011> mechanical twinning, which is similar to the deformation modes suggested previously for pure hcp iron at inner core conditions.

     
    more » « less
  4. Abstract

    The exact mechanism for lowermost mantle seismic anisotropy remains unknown; however, work on the elasticity and deformation of lower mantle materials has constrained a few possible options. The most probable minerals producing anisotropy are bridgmanite, postperovskite, and ferropericlase. While there is an extensive literature on the elasticity and deformation of lower mantle minerals, we create a comprehensive uniform database ofD″ anisotropy scenarios. In order to characterize a range of the possible fabrics forD″ anisotropy, we carry out VPSC (visco‐plastic self‐consistent modeling) to predict textures for each proposed mineral and dominant slip system. We numerically deform each mineral under different geometrical scenarios: simple shear, pure shear, and extension. By using published single crystal elasticity values, we produce a library of 336 candidate elastic tensors. We used the elastic tensor library to revisit previously publishedD″‐associated seismic anisotropy studies for crossing raypaths (Siberia, North America, the Afar region of Africa, and Australia). While we cannot identify a single, unique mechanism that explains all of these data sets, we find that postperovskite (dominant slip on [100](010) or [100](001)) and periclase (dominant slip on {100}<011>) provide the best fit to the observations and suggest reasonable shear directions for each region of interest. Bridgmanite generally provides a poor fit to the observations; however, we cannot completely rule out any particular model. As the number of anisotropy observations forD″ increases, this elastic tensor library will be helpful for observational seismologists in identifying possible mechanisms of anisotropy and shear directions at in the lowermost mantle.

     
    more » « less
  5. The seismic anisotropy of the Earth’s solid inner core has been the topic of much research. It could be explained by the crystallographic preferred orientation (CPO) developing during convection. The likely phase is hexagonal close-packed iron (hcp), alloyed with nickel and some lighter elements. Here we use high energy synchrotron X-rays to study CPO in Fe-9wt%Si, uniaxially compressed in a diamond anvil cell in radial geometry. The experiments reveal that strong preferred orientation forms in the low-pressure body-centred cubic (bcc) phase that appears to be softer than pure iron. CPO is attributed to dominant {110}<111>slip. The onset of the bcc→hcp transition occurs at a pressure of ≈15 GPa, and the alloy remains in a two phase bcc+hcp state up to 40 GPa. The hcp phase forms first with a distinct {11¯20} maximum perpendicular to compression. Modelling shows that this is a transformation texture, which can be described by Burgers orientation relationship with variant selection. Experimental results suggest that bcc grains oriented with <100> parallel to compression transform into hcp first. The CPO of the hcp changes only slowly during further pressure and deviatoric stress increase at ambient temperature. After heating to 1600 K, a change in the hcp CPO is observed with alignment of (0001) planes perpendicular to compression that can be interpreted as dominant (0001)<11¯20> slip, combined with {10¯12}<¯1011> mechanical twinning, which is similar to the deformation modes suggested previously for pure hcp iron at inner core conditions. 
    more » « less