skip to main content


Title: Optimizing the Tensile Strength for 3D Printed PLA Parts
This research investigates on how extruder nozzle temperature, model infill rate (i.e. density) and number of shells affect the tensile strength of three-dimensional polylactic acid (PLA) products manufactured with the fused deposition model technology. Our goal is to enhance the quality of 3D printed products using the Makerbot Replicator. In the last thirty years, additive manufacturing has been increasingly commercialized, therefore, it is critical to understand properties of PLA products to broaden the use of 3D printing. We utilize a Universal Tensile Machine and Quality Engineering to comprehend tensile strength characteristics of PLA. Tensile strength tests are performed on PLA specimens to analyze their resistance to breakage. Statistical analysis of the experimental data collected shows that extruder temperature and model infill rate (i.e. density) affect tensile strength.  more » « less
Award ID(s):
1431578
NSF-PAR ID:
10161472
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Solid Freeform Fabrication 2019: Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Additive manufacturing promises to revolutionize manufacturing industries. However, 3D printing of novel build materials is currently limited by constraints inherent to printer designs. In this work, a bench-top powder melt extrusion (PME) 3D printer head was designed and fabricated to print parts directly from powder-based materials rather than filament. The final design of the PME printer head evolved from the Rich Rap Universal Pellet Extruder (RRUPE) design and was realized through an iterative approach. The PME printer was made possible by modifications to the funnel shape, pressure applied to the extrudate by the auger, and hot end structure. Through comparison of parts printed with the PME printer with those from a commercially available fused filament fabrication (FFF) 3D printer using common thermoplastics poly(lactide) (PLA), high impact poly(styrene) (HIPS), and acrylonitrile butadiene styrene (ABS) powders (< 1 mm in diameter), evaluation of the printer performance was performed. For each build material, the PME printed objects show comparable viscoelastic properties by dynamic mechanical analysis (DMA) to those of the FFF objects. However, due to a significant difference in printer resolution between PME (X–Y resolution of 0.8 mm and a Z-layer height calibrated to 0.1 mm) and FFF (X–Y resolution of 0.4 mm and a Z-layer height of 0.18 mm), as well as, an inherently more inconsistent feed of build material for PME than FFF, the resulting print quality, determined by a dimensional analysis and surface roughness comparisons, of the PME printed objects was lower than that of the FFF printed parts based on the print layer uniformity and structure. Further, due to the poorer print resolution and inherent inconsistent build material feed of the PME, the bulk tensile strength and Young’s moduli of the objects printed by PME were lower and more inconsistent (49.2 ± 10.7 MPa and 1620 ± 375 MPa, respectively) than those of FFF printed objects (57.7 ± 2.31 MPa and 2160 ± 179 MPa, respectively). Nevertheless, PME print methods promise an opportunity to provide a platform on which it is possible to rapidly prototype a myriad of thermoplastic materials for 3D printing. 
    more » « less
  2. ABSTRACT

    Poly(lactic acid) (PLA) has a significant potential as a biodegradable polymer, but its high cost and slow biodegradability restrict its use in disposable products. This study establishes a novel route to accomplish both objectives by the addition of low‐cost soy fillers into PLA, which reduced material cost and increased the degradation rate of resulting soy‐PLA fibers. Due to partial thermal degradation of soy fillers at PLA melt temperature, they could be melt‐compounded into PLA up to 5 wt%. Fine continuous fibers (D ∼ 25‐50 μm) were successfully produced via melt spinning, and further melt‐consolidated into prototypical nonwovens. The tensile strength of soy‐PLA fibers containing soy reside and soy flour were 56 ± 9 and 44 ± 5 MPa, respectively. Although slightly lower than that of neat PLA fibers (74 ± 2 MPa), the fibers possessed adequate tenacity for use as nonwoven fabrics. Fiber modulus remained unaffected at about 2.5 GPa. The soy‐PLA fibers displayed a relatively rough exterior surface and provided a natural‐fiber feel. The overall degradation of soy‐PLA fibers was accelerated about 2‐fold in a basic medium due to the preferential dissolution of soy that led to increased surface area within the PLA matrix indicating their potential for use in biodegradable nonwovens.

     
    more » « less
  3. null (Ed.)
    Purpose The purpose of this study is to understand how printing parameters and subsequent annealing impacts porosity and crystallinity of 3D printed polylactic acid (PLA) and how these structural characteristics impact the printed material’s tensile strength in various build directions. Design/methodology/approach Two experimental studies were used, and samples with a flat vs upright print orientation were compared. The first experiment investigates a scan of printing parameters and annealing times and temperatures above the cold crystallization temperature ( T cc ) for PLA. The second experiment investigates annealing above and below T cc at multiple points over 12 h. Findings Annealing above T cc does not significantly impact the porosity but it does increase crystallinity. The increase in crystallinity does not contribute to an increase in strength, suggesting that co-crystallization across the weld does not occur. Atomic force microscopy (AFM) images show that weld interfaces between printed fibers are still visible after annealing above T cc , confirming the lack of co-crystallization. Annealing below T cc does not significantly impact porosity or crystallinity. However, there is an increase in tensile strength. AFM images show that annealing below T cc reduces thermal stresses that form at the interfaces during printing and slightly “heals” the as-printed interface resulting in an increase in tensile strength. Originality/value While annealing has been explored in the literature, it is unclear how it affects porosity, crystallinity and thermal stresses in fused filament fabrication PLA and how those factors contribute to mechanical properties. This study explains how co-crystallization across weld interfaces is necessary for crystallinity to increase strength and uses AFM as a technique to observe morphology at the weld. 
    more » « less
  4. Anisotropy in additive manufacturing (AM), particularly in the material extrusion process, plays a crucial role in determining the actual structural performance, including the stiffness and strength of the printed parts. Unless accounted for, anisotropy can compromise the objective performance of topology-optimized structures and allow premature failures for stress-sensitive design domains. This study harnesses process-induced anisotropy in material extrusion-based 3D printing to design and fabricate stiff, strong, and lightweight structures using a two-step framework. First, an AM-oriented anisotropic strength-based topology optimization formulation optimizes the structural geometry and infill orientations, while assuming both anisotropic (i.e., transversely isotropic) and isotropic infill types as candidate material phases. The dissimilar stiffness and strength interpolation schemes in the formulation allow for the optimized allocation of anisotropic and isotropic material phases in the design domain while satisfying their respective Tsai–Wu and von Mises stress constraints. Second, a suitable fabrication methodology realizes anisotropic and isotropic material phases with appropriate infill density, controlled print path (i.e., infill directions), and strong interfaces of dissimilar material phases. Experimental investigations show up to 37% improved stiffness and 100% improved strength per mass for the optimized and fabricated structures. The anisotropic strength-based optimization improves load-carrying capacity by simultaneous infill alignment along the stress paths and topological adaptation in response to high stress concentration. The adopted interface fabrication methodology strengthens comparatively weaker anisotropic joints with minimal additional material usage and multi-axial infill patterns. Furthermore, numerically predicted failure locations agree with experimental observations. The demonstrated framework is general and can potentially be adopted for other additive manufacturing processes that exhibit anisotropy, such as fiber composites. 
    more » « less
  5. null (Ed.)
    Abstract 3D printing has been extensively used for rapid prototyping as well as low-volume production in aerospace, automotive, and medical industries. However, conventional manufacturing processes (i.e., injection molding and CNC machining) are more economical than 3D printing for high-volume mass production. In addition, current 3D printing techniques are not capable of fabricating large components due to the limited build size of commercially available 3D printers. To increase 3D printing throughput and build volume, a novel cooperative 3D printing technique has been recently introduced. Cooperative 3D printing is an additive manufacturing process where individual mobile 3D printers collaborate on printing a part simultaneously, thereby increasing printing speed and build volume. While cooperative 3D printing has the potential to fabricate larger components more efficiently, the mechanical properties of the components fabricated by cooperative 3D printing have not been systematically characterized. This paper aims to develop a data-driven predictive model that predicts the tensile strength of the components fabricated by cooperative 3D printing. Experimental results have shown that the predictive model is capable of predicting tensile strength as well as identifying the significant factors that affect the tensile strength. 
    more » « less