skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatial Gap-Filling of ESA CCI Satellite-Derived Soil Moisture Based on Geostatistical Techniques and Multiple Regression
Soil moisture plays a key role in the Earth’s water and carbon cycles, but acquisition of continuous (i.e., gap-free) soil moisture measurements across large regions is a challenging task due to limitations of currently available point measurements. Satellites offer critical information for soil moisture over large areas on a regular basis (e.g., European Space Agency Climate Change Initiative (ESA CCI), National Aeronautics and Space Administration Soil Moisture Active Passive (NASA SMAP)); however, there are regions where satellite-derived soil moisture cannot be estimated because of certain conditions such as high canopy density, frozen soil, or extremely dry soil. We compared and tested three approaches, ordinary kriging (OK), regression kriging (RK), and generalized linear models (GLMs), to model soil moisture and fill spatial data gaps from the ESA CCI product version 4.5 from January 2000 to September 2012, over a region of 465,777 km2 across the Midwest of the USA. We tested our proposed methods to fill gaps in the original ESA CCI product and two data subsets, removing 25% and 50% of the initially available valid pixels. We found a significant correlation (r = 0.558, RMSE = 0.069 m3m−3) between the original satellite-derived soil moisture product with ground-truth data from the North American Soil Moisture Database (NASMD). Predicted soil moisture using OK also had significant correlation with NASMD data when using 100% (r = 0.579, RMSE = 0.067 m3m−3), 75% (r = 0.575, RMSE = 0.067 m3m−3), and 50% (r = 0.569, RMSE = 0.067 m3m−3) of available valid pixels for each month of the study period. RK showed comparable values to OK when using different percentages of available valid pixels, 100% (r = 0.582, RMSE = 0.067 m3m−3), 75% (r = 0.582, RMSE = 0.067 m3m−3), and 50% (r = 0.571, RMSE = 0.067 m3m−3). GLM had slightly lower correlation with NASMD data (average r = 0.475, RMSE = 0.070 m3m−3) when using the same subsets of available data (i.e., 100%, 75%, 50%). Our results provide support for using geostatistical approaches (OK and RK) as alternative techniques to gap-fill missing spatial values of satellite-derived soil moisture.  more » « less
Award ID(s):
1854312 1724843
PAR ID:
10161580
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Remote Sensing
Volume:
12
Issue:
4
ISSN:
2072-4292
Page Range / eLocation ID:
665
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. Soil moisture is key for understandingsoil–plant–atmosphere interactions. We provide a soil moisture patternrecognition framework to increase the spatial resolution and fill gaps ofthe ESA-CCI (European Space Agency Climate Change Initiative v4.5) soilmoisture dataset, which contains > 40 years of satellite soilmoisture global grids with a spatial resolution of ∼ 27 km. Weuse terrain parameters coupled with bioclimatic and soil type information topredict finer-grained (i.e., downscaled) satellite soil moisture. We assessthe impact of terrain parameters on the prediction accuracy bycross-validating downscaled soil moisture with and without the support ofbioclimatic and soil type information. The outcome is a dataset of gap-freeglobal mean annual soil moisture predictions and associated predictionvariances for 28 years (1991–2018) across 15 km grids. We use independent in siturecords from the International Soil Moisture Network (ISMN, 987 stations)and in situ precipitation records (171 additional stations) only for evaluating thenew dataset. Cross-validated correlation between observed and predicted soilmoisture values varies from r= 0.69 to r= 0.87 with root mean squarederrors (RMSEs, m3 m−3) around 0.03 and 0.04. Our soil moisturepredictions improve (a) the correlation with the ISMN (when compared withthe original ESA-CCI dataset) from r= 0.30 (RMSE = 0.09, unbiased RMSE (ubRMSE) = 0.37) tor= 0.66 (RMSE = 0.05, ubRMSE = 0.18) and (b) the correlation with local precipitation records across boreal (from r= < 0.3 up to r= 0.49) ortropical areas (from r= < 0.3 to r= 0.46) which are currentlypoorly represented in the ISMN. Temporal trends show a decline of globalannual soil moisture using (a) data from the ISMN (-1.5[-1.8,-1.24] %),(b) associated locations from the original ESA-CCI dataset (-0.87[-1.54,-0.17] %), (c) associated locations from predictions based on terrainparameters (-0.85[-1.01,-0.49] %), and (d) associated locations frompredictions including bioclimatic and soil type information (-0.68[-0.91,-0.45] %). We provide a new soil moisture dataset that has no gaps andhigher granularity together with validation methods and a modeling approachthat can be applied worldwide (Guevara et al., 2020,https://doi.org/10.4211/hs.9f981ae4e68b4f529cdd7a5c9013e27e). 
    more » « less
  2. Soil moisture is an important parameter that regulates multiple ecosystem processes and provides important information for environmental management and policy decision-making. Spaceborne sensors provide soil moisture information over large areas, but information is commonly available at coarse resolution with spatial and temporal gaps. Here, we present a modular spatial inference framework to downscale satellite-derived soil moisture using terrain parameters and test the performance of two modeling methods (Kernel-Weighted K-Nearest Neighbor and Random Forest ). We generate monthly and weekly gap-free spatial predictions on soil moisture at 1 km using data from the European Space Agency Climate Change Initiative (ESA-CCI; version 6.1) over two regions in the conterminous United States. RF was the method that performed better in cross-validation when comparing with the reference ESA-CCI data, but KKNN showed a slightly higher agreement with ground-truth information as part of independent validation. We postulate that more heterogeneous landscapes (i.e., high topographic variation) may be more challenging for downscaling and predicting soil moisture; therefore, moisture networks should increase monitoring efforts across these complex landscapes. Future opportunities for development of modular cyberinfrastructure tools for downscaling satellite-derived soil moisture are discussed. 
    more » « less
  3. In this study, optical and microwave satellite observations are integrated to estimate soil moisture at the same spatial resolution as the optical sensors (5km here) and applied for drought analysis in the continental United States. A new refined model is proposed to include auxiliary data like soil texture, topography, surface types, accumulated precipitation, in addition to Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) used in the traditional universal triangle method. It is found the new proposed soil moisture model using accumulated precipitation demonstrated close agreements with the U.S. Drought Monitor (USDM) spatial patterns. Currently, the USDM is providing a weekly map. Recently, “flash” drought concept appears. To obtain drought map on daily basis, LST is derived from microwave observations and downscaled to the same resolution as the thermal infrared LST product and used to fill the gaps due to clouds in optical LST data. With the integrated daily LST available under nearly all weather conditions, daily soil moisture can be estimated at relatively higher spatial resolution than those traditionally derived from passive microwave sensors, thus drought maps based on soil moisture anomalies can be obtained on daily basis and made the flash drought analysis and monitoring become possible. 
    more » « less
  4. Abstract Deep learning (DL) models trained on hydrologic observations can perform extraordinarily well, but they can inherit deficiencies of the training data, such as limited coverage of in situ data or low resolution/accuracy of satellite data. Here we propose a novel multiscale DL scheme learning simultaneously from satellite and in situ data to predict 9 km daily soil moisture (5 cm depth). Based on spatial cross‐validation over sites in the conterminous United States, the multiscale scheme obtained a median correlation of 0.901 and root‐mean‐square error of 0.034 m3/m3. It outperformed the Soil Moisture Active Passive satellite mission's 9 km product, DL models trained on in situ data alone, and land surface models. Our 9 km product showed better accuracy than previous 1 km satellite downscaling products, highlighting limited impacts of improving resolution. Not only is our product useful for planning against floods, droughts, and pests, our scheme is generically applicable to geoscientific domains with data on multiple scales, breaking the confines of individual data sets. 
    more » « less
  5. This study explores machine learning for estimating soil moisture at multiple depths (0–5 cm, 0–10 cm, 0–20 cm, 0–50 cm, and 0–100 cm) across the coterminous United States. A framework is developed that integrates soil moisture from Soil Moisture Active Passive (SMAP), precipitation from the Global Precipitation Measurement (GPM), evapotranspiration from the Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), vegetation data from the Moderate Resolution Imaging Spectroradiometer (MODIS), soil properties from gridded National Soil Survey Geographic (gNATSGO), and land cover information from the National Land Cover Database (NLCD). Five machine learning algorithms are evaluated including the feed-forward artificial neural network, random forest, extreme gradient boosting (XGBoost), Categorical Boosting, and Light Gradient Boosting Machine. The methods are tested by comparing to in situ soil moisture observations from several national and regional networks. XGBoost exhibits the best performance for estimating soil moisture, achieving higher correlation coefficients (ranging from 0.76 at 0–5 cm depth to 0.86 at 0–100 cm depth), lower root mean squared errors (from 0.024 cm3/cm3 at 0–100 cm depth to 0.039 cm3/cm3 at 0–5 cm depth), higher Nash–Sutcliffe Efficiencies (from 0.551 at 0–5 cm depth to 0.694 at 0–100 cm depth), and higher Kling–Gupta Efficiencies (0.511 at 0–5 cm depth to 0.696 at 0–100 cm depth). Additionally, XGBoost outperforms the SMAP Level 4 product in representing the time series of soil moisture for the networks. Key factors influencing the soil moisture estimation are elevation, clay content, aridity index, and antecedent soil moisture derived from SMAP. 
    more » « less