Climate models project changing patterns of precipitation and increases in temperature that modify soil moisture dynamics. Land use and changing frequency and intensity of precipitation can induce changes in soil structure and rooting abundances at timescales shorter than commonly considered. Soil structure is a critical ecosystem that governs water flow through soil profiles and across landscapes, and can influence weathering rates and thus solute release and soil development. We hypothesize that the altered soil structure and modification of rooting depth distributions linked to land use change can influence soil solute concentrations, and that those shifts in solute release are dependent on patterns of precipitation. We installed suction lysimeters to collect soil water for ~3 y in two grassland regions with distinct mean annual precipitation (800 mm y-1, 1100 mm y-1) in native prairie, agriculture, and post-agriculture land uses at depths of 10, 40, and 120 cm. We linked solute concentrations to soil moisture, aggregate-size distribution, pore geometry, and rooting depth distributions to assess how land use change and the altered rooting abundance it imposes can modify soil structure and hydrologic fluxes, and to infer how soil weathering can shift deep in the subsurface. We reveal how soil moisture residence time and the soil pore network can govern solute production, and the importance of precipitation and thus of soil moisture accumulation over growing seasons for mineral weathering and solute production. Specifically, we find that the solubility potential of multiple weathering products and organic carbon increases with precipitation, dominance of relatively small aggregates at the surface, and fewer coarse roots. Enhanced solute concentrations at depth may also reflect transport down-profile. Our findings reveal unintended consequences of land use change that influence important hydrologic dynamics and nutrient cycling in the vadose zone and how deeply and how persistently unexpected consequences of changes in land cover can propagate.
more »
« less
Estimating Rootzone Soil Moisture by Fusing Multiple Remote Sensing Products with Machine Learning
This study explores machine learning for estimating soil moisture at multiple depths (0–5 cm, 0–10 cm, 0–20 cm, 0–50 cm, and 0–100 cm) across the coterminous United States. A framework is developed that integrates soil moisture from Soil Moisture Active Passive (SMAP), precipitation from the Global Precipitation Measurement (GPM), evapotranspiration from the Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), vegetation data from the Moderate Resolution Imaging Spectroradiometer (MODIS), soil properties from gridded National Soil Survey Geographic (gNATSGO), and land cover information from the National Land Cover Database (NLCD). Five machine learning algorithms are evaluated including the feed-forward artificial neural network, random forest, extreme gradient boosting (XGBoost), Categorical Boosting, and Light Gradient Boosting Machine. The methods are tested by comparing to in situ soil moisture observations from several national and regional networks. XGBoost exhibits the best performance for estimating soil moisture, achieving higher correlation coefficients (ranging from 0.76 at 0–5 cm depth to 0.86 at 0–100 cm depth), lower root mean squared errors (from 0.024 cm3/cm3 at 0–100 cm depth to 0.039 cm3/cm3 at 0–5 cm depth), higher Nash–Sutcliffe Efficiencies (from 0.551 at 0–5 cm depth to 0.694 at 0–100 cm depth), and higher Kling–Gupta Efficiencies (0.511 at 0–5 cm depth to 0.696 at 0–100 cm depth). Additionally, XGBoost outperforms the SMAP Level 4 product in representing the time series of soil moisture for the networks. Key factors influencing the soil moisture estimation are elevation, clay content, aridity index, and antecedent soil moisture derived from SMAP.
more »
« less
- Award ID(s):
- 2312319
- PAR ID:
- 10614768
- Publisher / Repository:
- Remote Sensing
- Date Published:
- Journal Name:
- Remote Sensing
- Volume:
- 16
- Issue:
- 19
- ISSN:
- 2072-4292
- Page Range / eLocation ID:
- 3699
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The effect of machine learning and other enhancements on statistical–dynamical forecasts of soil moisture (0–10 and 0–100 cm) and a reference evapotranspiration fraction [evaporative stress index (ESI)] on subseasonal time scales (15–28 days) are explored. The predictors include the current and past land surface conditions and dynamical model hindcasts from the Subseasonal to Seasonal Prediction project (S2S). When the methods are enhanced with machine learning and other improvements, the increases in skill are almost exclusively coming from predictors drawn from observations of current and past land surface states. This suggests that operational S2S flash drought forecasts should focus on optimizing use of information on current conditions rather than on integrating dynamically based forecasts, given the current state of knowledge. Nonlinear machine learning methods lead to improved skill over linear methods for soil moisture but not for ESI. Improvements for both soil moisture and ESI are realized by increasing the sample size by including surrounding grid points in training and increasing the number of predictors. In addition, all the improvements in the soil moisture forecasts predominantly impact soil moistening rather than soil drying—i.e., prediction of conditions moving away from drought rather than into drought—especially when the initial soil state is drier than normal. The physical reasons for the nonlinear machine learning improvements are also explored. Significance StatementRapidly intensifying droughts pose extra challenges for predictability. Here, dynamical forecast model output is combined with nonlinear machine learning methods to improve forecasts of rapid changes in soil moisture and the evaporative stress index (ESI).more » « less
-
Abstract A frequently expressed viewpoint across the Earth science community is that global soil moisture estimates from satellite L‐band (1.4 GHz) measurements represent moisture only in a shallow surface layer (0–5 cm) and consequently are of limited value for studying global terrestrial ecosystems because plants use water from deeper rootzones. Using this argumentation, many observation‐based land surface studies avoid satellite‐observed soil moisture. Here, based on peer‐reviewed literature across several fields, we argue that such a viewpoint is overly limiting for two reasons. First, microwave soil emission depth considerations and statistical considerations of vertically correlated soil moisture information together indicate that L‐band measurements carry information about soil moisture extending below the commonly referenced 5 cm in many conditions. However, spatial variations of effective depths of representation remain uncertain. Second, in reviewing isotopic tracer field studies of plant water uptake, we find a prevalence of vegetation that primarily draws moisture from these upper soil layers. This is especially true for grasslands and croplands covering more than a third of global vegetated surfaces. Even some deeper‐rooted species (i.e., shrubs and trees) preferentially or seasonally draw water from the upper soil layers. Therefore, L‐band satellite soil moisture estimates are more relevant to global vegetation water uptake than commonly appreciated (i.e., relevant beyond only shallow soil processes like soil evaporation). Our commentary encourages the application of satellite soil moisture across a broader range of terrestrial hydrosphere and biosphere studies while urging more rigorous estimates of its effective depth of representation.more » « less
-
Research in different agricultural sectors, including in crop loss estimation during flood and yield estimation, substantially rely on inundation information. Spaceborne remote sensing has widely been used in the mapping and monitoring of floods. However, the inability of optical remote sensing to cloud penetration and the scarcity of fine temporal resolution SAR data hinder the application of flood mapping in many cases. Soil Moisture Active Passive (SMAP) level 4 products, which are model-driven soil moisture data derived from SMAP observations and are available at 3-h intervals, can offer an intermediate but effective solution. This study maps flood progress in croplands by incorporating SMAP surface soil moisture, soil physical properties, and national floodplain information. Soil moisture above the effective soil porosity is a direct indication of soil saturation. Soil moisture also increases considerably during a flood event. Therefore, this approach took into account three conditions to map the flooded pixels: a minimum of 0.05 m3m−3 increment in soil moisture from pre-flood to post-flood condition, soil moisture above the effective soil porosity, and the holding of saturation condition for the 72 consecutive hours. Results indicated that the SMAP-derived maps were able to successfully map most of the flooded areas in the reference maps in the majority of the cases, though with some degree of overestimation (due to the coarse spatial resolution of SMAP). Finally, the inundated croplands are extracted from saturated areas by Spatial Hazard Zone areas (SHFA) of Federal Emergency Management Agency (FEMA) and cropland data layer (CDL). The flood maps extracted from SMAP data are validated with FEMA-declared affected counties as well as with flood maps from other sources.more » « less
-
The Soil Moisture Active Passive (SMAP) mission measures important soil moisture data globally. SMAP's products might not always perform better than land surface models (LSM) when evaluated against in situ measurements. However, we hypothesize that SMAP presents added value for long-term soil moisture estimation in a data fusion setting as evaluated by in situ data. Here, with the help of a time series deep learning (DL) method, we created a seamlessly extended SMAP data set to test this hypothesis and, importantly, gauge whether such benefits extend to years beyond SMAP's limited lifespan. We first show that the DL model, called long short-term memory (LSTM), can extrapolate SMAP for several years and the results are similar to the training period. We obtained prolongation results with low-performance degradation where SMAP itself matches well with in situ data. Interannual trends of root-zone soil moisture are surprisingly well captured by LSTM. In some cases, LSTM's performance is limited by SMAP, whose main issue appears to be its shallow sensing depth. Despite this limitation, a simple average between LSTM and an LSM Noah frequently outperforms Noah alone. Moreover, Noah combined with LSTM is more skillful than when it is combined with another LSM. Over sparsely instrumented sites, the Noah-LSTM combination shows a stronger edge. Our results verified the value of LSTM-extended SMAP data. Moreover, DL is completely data driven and does not require structural assumptions. As such, it has its unique potential for long-term projections and may be applied synergistically with other model-data integration techniques.more » « less
An official website of the United States government

