skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chemically inert covalently networked triazole-based solid polymer electrolytes for stable all-solid-state lithium batteries
Covalently networked polymers offer desirable non-crystallinity and mechanical strength for solid polymer electrolytes (SPEs), but the chemically active cross-links involved in their construction could deteriorate the compatibility with high-energy cathode materials that are electrophilic and/or in the charged state. Herein we reveal a strong dependence of cyclability of such cathodes on the reactivity of covalently networked SPEs and demonstrate a polymer design that renders these SPEs chemically inert. We designed and synthesized two hybrid networks, both with polyethylene oxide as the cation conducting component and polyhedral oligomeric silsesquioxane as the branch point, but respectively use alkylamino and chemically inert triazole groups as cross-links. All-solid-state cells using the alkylamino-containing SPE underwent rapid degradation while cells using triazole SPEs showed stable cycling.  more » « less
Award ID(s):
1809866
PAR ID:
10161614
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
7
Issue:
34
ISSN:
2050-7488
Page Range / eLocation ID:
19691 to 19695
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Solid electrolytes are critical for structural batteries, combining energy storage with structural strength for applications like electric vehicles and aerospace. However, achieving high ionic conductivity remains challenging, compounded by a lack of standardized testing methodologies. This study examines the impact of experimental setups and data interpretation methods on the measured ionic conductivities of solid polymer electrolytes (SPEs). SPEs were prepared using a polymer-induced phase separation process, resulting in a bi-continuous microstructure for improved ionic transport. Eight experimental rigs were evaluated, including two- and four-electrode setups with materials like stainless steel, copper, and aluminum. Ionic conductivity was assessed using electrochemical impedance spectroscopy, with analysis methods comparing cross-sectional and surface-area-based approaches. Results showed that the four-electrode stainless steel setup yielded the highest ionic conductivity using the cross-sectional method. However, surface-area-based methods provided more consistent results across rigs. Copper setups produced lower conductivities but exhibited less data variability, indicating their potential for reproducible measurements. These findings highlight the critical influence of experimental design on conductivity measurements and emphasize the need for standardized testing protocols. Advancing reliable characterization methods will support the development of high-performance solid electrolytes for multifunctional energy storage applications. 
    more » « less
  2. Abstract To dissect the antibiotic role of nanostructures from chemical moieties belligerent to both bacterial and mammalian cells, here we show the antimicrobial activity and cytotoxicity of nanoparticle-pinched polymer brushes (NPPBs) consisting of chemically inert silica nanospheres of systematically varied diameters covalently grafted with hydrophilic polymer brushes that are non-toxic and non-bactericidal. Assembly of the hydrophilic polymers into nanostructured NPPBs doesn’t alter their amicability with mammalian cells, but it incurs a transformation of their antimicrobial potential against bacteria, including clinical multidrug-resistant strains, that depends critically on the nanoparticle sizes. The acquired antimicrobial potency intensifies with small nanoparticles but subsides quickly with large ones. We identify a threshold size (d silica ~ 50 nm) only beneath which NPPBs remodel bacteria-mimicking membrane into 2D columnar phase, the epitome of membrane pore formation. This study illuminates nanoengineering as a viable approach to develop nanoantibiotics that kill bacteria upon contact yet remain nontoxic when engulfed by mammalian cells. 
    more » « less
  3. Solid polymer electrolytes (SPEs) are one of the most promising solutions to the safety issues of lithium batteries. Understanding the morphology and dynamic effects on the ion transport properties of SPEs would be essential for future SPE design. In this article, using poly(ethylene oxide) (PEO) as an example, we focus on morphology control in semicrystalline SPEs. We show that the effect of semicrystallinity can be quantitatively separated into volume, structure and dynamic effects. We further demonstrate that morphological control plays an important role in ion transport control in semicrystalline SPE systems. 
    more » « less
  4. Solid polymer electrolytes (SPEs) offer a safer battery electrolyte alternative but face design challenges. This review highlights applications of machine learning alongside theory-based models to improve SPE design. 
    more » « less
  5. Solid-state sulfur cathodes based on inorganic sulfide solid electrolytes can enable energy-dense lithium batteries. However, volume changes and chemical decomposition can drive delamination and degradation during cycling. To overcome these challenges, this paper reports an in situ approach to encapsulate the solid-state sulfur cathode with a gel polymer electrolyte (GPE). The GPE is covalently bonded with the sulfide solid electrolyte and acts as a barrier that suppresses chemical decomposition between the sulfide solid electrolyte and cathode active material. The elastic GPE maintains interfacial contact within the sulfur cathode allowing for greater sulfur utilization. The solid-state sulfur cathode with GPE demonstrates capacities nearing 700 mAh g −1 and capacity retention over 100 cycles. 
    more » « less