Abstract To dissect the antibiotic role of nanostructures from chemical moieties belligerent to both bacterial and mammalian cells, here we show the antimicrobial activity and cytotoxicity of nanoparticle-pinched polymer brushes (NPPBs) consisting of chemically inert silica nanospheres of systematically varied diameters covalently grafted with hydrophilic polymer brushes that are non-toxic and non-bactericidal. Assembly of the hydrophilic polymers into nanostructured NPPBs doesn’t alter their amicability with mammalian cells, but it incurs a transformation of their antimicrobial potential against bacteria, including clinical multidrug-resistant strains, that depends critically on the nanoparticle sizes. The acquired antimicrobial potency intensifies with small nanoparticles but subsides quickly with large ones. We identify a threshold size (d silica ~ 50 nm) only beneath which NPPBs remodel bacteria-mimicking membrane into 2D columnar phase, the epitome of membrane pore formation. This study illuminates nanoengineering as a viable approach to develop nanoantibiotics that kill bacteria upon contact yet remain nontoxic when engulfed by mammalian cells. 
                        more » 
                        « less   
                    
                            
                            Chemically inert covalently networked triazole-based solid polymer electrolytes for stable all-solid-state lithium batteries
                        
                    
    
            Covalently networked polymers offer desirable non-crystallinity and mechanical strength for solid polymer electrolytes (SPEs), but the chemically active cross-links involved in their construction could deteriorate the compatibility with high-energy cathode materials that are electrophilic and/or in the charged state. Herein we reveal a strong dependence of cyclability of such cathodes on the reactivity of covalently networked SPEs and demonstrate a polymer design that renders these SPEs chemically inert. We designed and synthesized two hybrid networks, both with polyethylene oxide as the cation conducting component and polyhedral oligomeric silsesquioxane as the branch point, but respectively use alkylamino and chemically inert triazole groups as cross-links. All-solid-state cells using the alkylamino-containing SPE underwent rapid degradation while cells using triazole SPEs showed stable cycling. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1809866
- PAR ID:
- 10161614
- Date Published:
- Journal Name:
- Journal of Materials Chemistry A
- Volume:
- 7
- Issue:
- 34
- ISSN:
- 2050-7488
- Page Range / eLocation ID:
- 19691 to 19695
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Solid polymer electrolytes (SPEs) are one of the most promising solutions to the safety issues of lithium batteries. Understanding the morphology and dynamic effects on the ion transport properties of SPEs would be essential for future SPE design. In this article, using poly(ethylene oxide) (PEO) as an example, we focus on morphology control in semicrystalline SPEs. We show that the effect of semicrystallinity can be quantitatively separated into volume, structure and dynamic effects. We further demonstrate that morphological control plays an important role in ion transport control in semicrystalline SPE systems.more » « less
- 
            Solid-state sulfur cathodes based on inorganic sulfide solid electrolytes can enable energy-dense lithium batteries. However, volume changes and chemical decomposition can drive delamination and degradation during cycling. To overcome these challenges, this paper reports an in situ approach to encapsulate the solid-state sulfur cathode with a gel polymer electrolyte (GPE). The GPE is covalently bonded with the sulfide solid electrolyte and acts as a barrier that suppresses chemical decomposition between the sulfide solid electrolyte and cathode active material. The elastic GPE maintains interfacial contact within the sulfur cathode allowing for greater sulfur utilization. The solid-state sulfur cathode with GPE demonstrates capacities nearing 700 mAh g −1 and capacity retention over 100 cycles.more » « less
- 
            The year 1975 can be claimed to be the year of inception for the research and development of solid polymer electrolytes (SPEs) for Lithium-Ion Batteries (LIB), when the ionic conductivity of polyethylene oxide–alkaline metal ion complex was found by Peter Wright from the University of Sheffield. However, SPE research has undergone a leapfrog development, with conductivity values improving from 1 × 10–7 S·cm−1 to 1 × 10– 1 S·cm−1. The seed of development of SPEs spurs from the need for introducing design freedom to battery structures as well as the need for leak-proof electrolytes, greater operational safety, higher energy density, and other considerations. While the benefits of SPEs are evident, poor interfacial contact is a major factor limiting their application. This review presents the history of SPEs and shows how the additive manufacturing (AM) could prove beneficial for the improvement of performance and the functional implementation of SPEs. While the article articulates a technical review of additively manufactured SPEs, it also provides a lab-to-market perspective that could aid in shaping the future of green technology in energy storage. It also aims to provide an overall picture about the evolution and diversity of research advances in the development of greener SPEs through AM technology.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    