skip to main content


Title: A Robot System for Automated Wound Filling with Jetted Materials
Skin surface wounds due to burns, surgeries and chronic illness affect millions of people worldwide. Tissue engineering has become an increasingly popular treatment, but it is a highly manual process. Increasing the automation in tissue engineering could increase the rate of treatment for patients and improve outcomes. We present an initial investigation into an automated in-situ treatment. In our proposed method, a 3D machine vision system detects a skin wound to be treated and then determines the 3D point set corresponding to the wound. The 3D point set is then passed to path planning algorithm for a robot manipulator to move an ink-jet nozzle over the wound and fill the cavity with quick-curing/gelling fluids such collagen and other biomaterials and cell growth promoters. This paper details initial results and experimental validation of each of the proposed steps.  more » « less
Award ID(s):
1563424
NSF-PAR ID:
10161726
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Page Range / eLocation ID:
1789 to 1794
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Objective: To elucidate the mechanics of scalp rotation flaps through 3D imaging and computational modeling. Excessive tension near a wound or sutured region can delay wound healing or trigger complications. Measuring tension in the operating room is challenging, instead, noninvasive methods to improve surgical planning are needed. Design: Multi-view stereo allows creation of 3D patient-specific geometries based on a set of photographs. The patient-specific 3D geometry is imported into a finite element (FE) platform to perform a virtual procedure. The simulation is compared with the clinical outcome. Additional simulations quantify the effect of individual flap parameters on the resulting tension distribution. Participants: Rotation flaps for reconstruction of scalp defects following melanoma resection in 2 cases are presented. Rotation flaps were designed without preoperative FE preparation. Main Outcome Measure: Tension distribution over the operated region. Results: The tension from FE shows peaks at the base and distal ends of the scalp rotation flap. The predicted geometry from the simulation aligns with postoperative photographs. Simulations exploring the flap design parameters show variation in the tension. Lower tensions were achieved when rotation was oriented with respect to skin tension lines (horizontal tissue fibers) and smaller rotation angles. Conclusions: Tension distribution following rotation of scalp flaps can be predicted through personalized FE simulations. Flaps can be designed to reduce tension using FE, which may greatly improve the reliability of scalp reconstruction in craniofacial surgery, critical in complex cases when scalp reconstruction is essential for coverage of hardware, implants, and/or bone graft. 
    more » « less
  2. null (Ed.)
    A number of challenges in skin grafting for wound healing have drawn researchers to focus on skin tissue engineering as an alternative solution. The core idea of tissue engineering is to use scaffolds, cells, and/or bioactive molecules to help the skin to properly recover from injuries. Over the past decades, the field has significantly evolved, developing various strategies to accelerate and improve skin regeneration. However, there are still several concerns that should be addressed. Among these limitations, vascularization is known as a critical challenge that needs thorough consideration. Delayed wound healing of large defects results in an insufficient vascular network and ultimately ischemia. Recent advances in the field of tissue engineering paved the way to improve vascularization of skin substitutes. Broadly, these solutions can be classified into two categories as (1) use of growth factors, reactive oxygen species-inducing nanoparticles, and stem cells to promote angiogenesis, and (2) in vitro or in vivo prevascularization of skin grafts. This review summarizes the state-of-the-art approaches, their limitations, and highlights the latest advances in therapeutic vascularization strategies for skin tissue engineering. 
    more » « less
  3. Abstract

    Surgery is the most frequent treatment for patients with brain tumors. The construction of full‐scale human brain models, which is still challenging to realize via current manufacturing techniques, can effectively train surgeons before brain tumor surgeries. This paper aims to develop a set of three‐dimensional (3D) printing approaches to fabricate customized full‐scale human brain models for surgery training as well as specialized brain patches for wound healing after surgery. First, a brain patch designed to fit a wound's shape and size can be easily printed in and collected from a stimuli‐responsive yield‐stress support bath. Then, an inverse 3D printing strategy, called “peeling‐boiled‐eggs,” is proposed to fabricate full‐scale human brain models. In this strategy, the contour layer of a brain model is printed using a sacrificial ink to envelop the target brain core within a photocurable yield‐stress support bath. After crosslinking the contour layer, the as‐printed model can be harvested from the bath to photo crosslink the brain core, which can be eventually released by liquefying the contour layer. Both the brain patch and full‐scale human brain model are successfully printed to mimic the scenario of wound healing after removing a brain tumor, validating the effectiveness of the proposed 3D printing approaches.

     
    more » « less
  4.  
    more » « less
  5. Marsden, Alison L. (Ed.)

    Injuries to the skin heal through coordinated action of fibroblast-mediated extracellular matrix (ECM) deposition, ECM remodeling, and wound contraction. Defects involving the dermis result in fibrotic scars featuring increased stiffness and altered collagen content and organization. Although computational models are crucial to unravel the underlying biochemical and biophysical mechanisms, simulations of the evolving wound biomechanics are seldom benchmarked against measurements. Here, we leverage recent quantifications of local tissue stiffness in murine wounds to refine a previously-proposed systems-mechanobiological finite-element model. Fibroblasts are considered as the main cell type involved in ECM remodeling and wound contraction. Tissue rebuilding is coordinated by the release and diffusion of a cytokine wave,e.g.TGF-β, itself developed in response to an earlier inflammatory signal triggered by platelet aggregation. We calibrate a model of the evolving wound biomechanics through a custom-developed hierarchical Bayesian inverse analysis procedure. Further calibration is based on published biochemical and morphological murine wound healing data over a 21-day healing period. The calibrated model recapitulates the temporal evolution of: inflammatory signal, fibroblast infiltration, collagen buildup, and wound contraction. Moreover, it enablesin silicohypothesis testing, which we explore by: (i) quantifying the alteration of wound contraction profiles corresponding to the measured variability in local wound stiffness; (ii) proposing alternative constitutive links connecting the dynamics of the biochemical fields to the evolving mechanical properties; (iii) discussing the plausibility of a stretch-vs.stiffness-mediated mechanobiological coupling. Ultimately, our model challenges the current understanding of wound biomechanics and mechanobiology, beside offering a versatile tool to explore and eventually control scar fibrosis after injury.

     
    more » « less