skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fibro‐Gel: An All‐Aqueous Hydrogel Consisting of Microfibers with Tunable Release Profile and its Application in Wound Healing
Abstract Injectable hydrogels are valuable tools in tissue engineering and regenerative medicine due to their unique advantages of injectability with minimal invasiveness and usability for irregularly shaped sites. However, it remains challenging to achieve scalable manufacturing together with matching physicochemical properties and on‐demand drug release for a high level of control over biophysical and biomedical cues to direct endogenous cells. Here, the use of an injectable fibro‐gel is demonstrated, a water‐filled network of entangled hydrogel microfibers, whose physicochemical properties and drug release profiles can be tailored to overcome these shortcomings. This fibro‐gel exhibits favorable in vitro biocompatibility and the capability to aid vascularization. The potential use of the fibro‐gel for advancing tissue regeneration is explored with a mice excision skin model. Preliminary in vivo tests indicate that the fibro‐gel promotes wound healing and new healthy tissue regeneration at a faster rate than a commercial gel. Moreover, it is demonstrated that the release of distinct drugs at different rates can further accelerate wound healing with higher efficiency, by using a two‐layer fibro‐gel model. The combination of injectability and tailorable properties of this fibro‐gel offers a promising approach in biomedical fields such as therapeutic delivery, medical dressings, and 3D tissue scaffolds for tissue engineering.  more » « less
Award ID(s):
2011750
PAR ID:
10508976
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Advanced Materials
Date Published:
Journal Name:
Advanced Materials
Volume:
35
Issue:
19
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dynamic covalent chemistry (DCC) crosslinks can form hydrogels with tunable mechanical properties permissive to injectability and self‐healing. However, not all hydrogels with transient crosslinks are easily extrudable. For this reason, two additional design parameters must be considered when formulating DCC‐crosslinked hydrogels: 1) degree of functionalization (DoF) and 2) polymer molecular weight (MW). To investigate these parameters, hydrogels comprised of two recombinant biopolymers: 1) a hyaluronic acid (HA) modified with benzaldehyde and 2) an elastin‐like protein (ELP) modified with hydrazine (ELP‐HYD), are formulated. Several hydrogel families are synthesized with distinct HA MW and DoF while keeping the ELP‐HYD component constant. The resulting hydrogels have a range of stiffnesses,G′ ≈ 10–1000 Pa, and extrudability, which is attributed to the combined effects of DCC crosslinks and polymer entanglements. In general, lower MW formulations require lower forces for injectability, regardless of stiffness. Higher DoF formulations exhibit more rapid self‐healing. Gel extrusion through a cannula (2 m length, 0.25 mm diameter) demonstrates the potential for minimally invasive delivery for future biomedical applications. In summary, this work highlights additional parameters that influence the injectability and network formation of DCC‐crosslinked hydrogels and aims to guide future design of injectable hydrogels. 
    more » « less
  2. Abstract BackgroundBasic fibroblast growth factor (bFGF) is one of the critical components accelerating angiogenesis and tissue regeneration by promoting the migration of dermal fibroblasts and endothelial cells associated with matrix formation and remodeling in wound healing process. However, clinical applications of bFGF are substantially limited by its unstable nature due to rapid decomposition under physiological microenvironment. ResultsIn this study, we present the bFGF-loaded human serum albumin nanoparticles (HSA-bFGF NPs) as a means of enhanced stability and sustained release platform during tissue regeneration. Spherical shape of the HSA-bFGF NPs with uniform size distribution (polydispersity index < 0.2) is obtainedviaa simple desolvation and crosslinking process. The HSA-bFGF NPs securely load and release the intact soluble bFGF proteins, thereby significantly enhancing the proliferation and migration activity of human dermal fibroblasts. Myofibroblast-related genes and proteins were also significantly down-regulated, indicating decrease in risk of scar formation. Furthermore, wound healing is accelerated while achieving a highly organized extracellular matrix and enhanced angiogenesis in vivo. ConclusionConsequently, the HSA-bFGF NPs are suggested not only as a delivery vehicle but also as a protein stabilizer for effective wound healing and tissue regeneration. 
    more » « less
  3. Nanoclay–polymer shear-thinning composites are designed for a broad range of biomedical applications, including tissue engineering, drug delivery, and additive biomanufacturing. Despite the advances in clay–polymer injectable nanocomposites, colloidal properties of layered silicates are not fully considered in evaluating the in vitro performance of shear-thinning biomaterials (STBs). Here, as a model system, we investigate the effect of ions on the rheological properties and injectability of nanoclay–gelatin hydrogels to understand their behavior when prepared in physiological media. In particular, we study the effect of sodium chloride (NaCl) and calcium chloride (CaCl 2 ), common salts in phosphate buffered saline (PBS) and cell culture media ( e.g. , Dulbecco's Modified Eagle's Medium, DMEM), on the structural organization of nanoclay (LAPONITE® XLG-XR, a hydrous lithium magnesium sodium silicate)-polymer composites, responsible for the shear-thinning properties and injectability of STBs. We show that the formation of nanoclay–polymer aggregates due to the ion-induced shrinkage of the diffuse double layer and eventually the liquid–solid phase separation decrease the resistance of STB against elastic deformation, decreasing the yield stress. Accordingly, the stress corresponding to the onset of structural breakdown (yield zone) is regulated by the ion type and concentration. These results are independent of the STB composition and can directly be translated into the physiological conditions. The exfoliated nanoclay undergoes visually undetectable aggregation upon mixing with gelatin in physiological media, resulting in heterogeneous hydrogels that phase separate under stress. This work provides fundamental insights into nanoclay–polymer interactions in physiological environments, paving the way for designing clay-based injectable biomaterials. 
    more » « less
  4. Chitosan nanofiber membranes are recognized as functional antimicrobial materials, as they can effectively provide a barrier that guides tissue growth and supports healing. Methods to stabilize nanofibers in aqueous solutions include acylation with fatty acids. Modification with fatty acids that also have antimicrobial and biofilm-resistant properties may be particularly beneficial in tissue regeneration applications. This study investigated the ability to customize the fatty acid attachment by acyl chlorides to include antimicrobial 2-decenoic acid. Synthesis of 2-decenoyl chloride was followed by acylation of electrospun chitosan membranes in pyridine. Physicochemical properties were characterized through scanning electron microscopy, FTIR, contact angle, and thermogravimetric analysis. The ability of membranes to resist biofilm formation by S. aureus and P. aeruginosa was evaluated by direct inoculation. Cytocompatibility was evaluated by adding membranes to cultures of NIH3T3 fibroblast cells. Acylation with chlorides stabilized nanofibers in aqueous media without significant swelling of fibers and increased hydrophobicity of the membranes. Acyl-modified membranes reduced both S. aureus and P.aeruginosa bacterial biofilm formation on membrane while also supporting fibroblast growth. Acylated chitosan membranes may be useful as wound dressings, guided regeneration scaffolds, local drug delivery, or filtration. 
    more » « less
  5. ABSTRACT Hydrogels have been widely used in many applications from tissue engineering to drug delivery systems. For both tissue engineering and drug delivery, the mechanical properties are important because they would affect cell-materials interactions and injectability of drugs encapsulated in hydrogel carriers. Therefore, it is important to study the mechanical properties of these hydrogels, particularly at physiological temperature (37°C). This study adopted strain sweep and frequency sweep rotational rheological tests to investigate the rheological characteristics of various tissue engineering relevant hydrogels with different concentrations at 37°C. These hydrogels include alginate, RGD-alginate, and copolymerized collagen/alginate/fibrin. It has revealed that the addition of RGD has negligible effect on the elastic modulus and viscosity of alginate. Alginate gels have demonstrated shear thinning behavior which indicates that they are suitable candidates as carriers for cells or drug delivery. The addition of collagen and fibrin would reinforce the mechanical properties of alginate which makes it a strong scaffold material. 
    more » « less