skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: National Trends in the Formal Content Preparation of US Science Teachers: Implications of Out-of-Field Teaching for Student Outcomes
This study used nationally representative data from the 2011 National Assessment of Educational Progress (8th-grade Science) and the 2018 National Survey of Science and Mathematics Education toward two primary purposes: (a) to examine the association between teachers’ formal (university) content preparation in science and student outcomes in science, and (b) to document the prevalence and locality of Out-of-Field (OoF) science teaching in the US. The relationship between teachers’ formal science preparation and students’ 8th-grade science outcomes was mixed across science disciplines with a statistically significant association being observed for students’ earth science outcomes. Teachers’ experience teaching science and access to science instructional materials/kits were more strongly associated with student outcomes than was their formal content preparation, with statistically significant associations observed for all student outcomes (physical science, life science, and earth science). The prevalence of OoF science teaching was higher in middle schools than in high schools, as well as more frequently occurring in historically lower achieving and impoverished educational contexts.  more » « less
Award ID(s):
1642413
PAR ID:
10161827
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Science Teacher Education
ISSN:
1046-560X
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Math performance continues to be an important focus for improve- ment. Many districts adopted educational technology programs to support student learning and teacher instruction. The ASSISTments program provides feedback to students as they solve homework problems and automatically prepares reports for teachers about student performance on daily assignments. During the 2018- 19 and 2019-20 school years, WestEd led a large-scale randomized controlled trial to replicate the effects of ASSISTments in 63 schools in North Carolina in the US. 32 treatment schools implemented ASSISTments in 7th-grade math class- rooms. Recently, we conducted a follow-up analysis to measure the long-term effects of ASSISTments on student performance one year after the intervention, when the students were in 8th grade. The initial results suggested that implement- ing ASSISTments in 7th grade improved students’ performance in 8th grade and minority students benefited more from the intervention. 
    more » « less
  2. A substantial achievement gap between K-12 English learners (ELs) and non-ELs in science, technology, engineering, and mathematics (STEM) content areas exists, as indicated by national assessments of student outcomes. Considering the expected steady increase in students who are ELs in the U.S., determining methods for addressing this achievement gap is of immediate concern. Research has indicated this gap may be exacerbated by lack of adequate teacher preparation, specifically in STEM fields, to effectively teach students who are culturally and linguistically diverse (CLD). Founded in previous research about effective teacher preparation, the current case study pilots and reports on a model of early STEM preservice teacher training that integrates: knowledge of language development for ELs, early experiences with CLD learners, and professional development activities that guide the implementation of STEM pedagogical methods. Five STEM preservice teachers participated in a year-long supplemental training program focused on adapting STEM instruction for ELs. Components of the supplemental program included: (a) coursework extending teacher knowledge of EL language development, (b) fieldwork providing early exposure to research-based teaching experiences with EL students, and (c) professional development guiding the creation of hands-on STEM curriculum for diverse learners. Five secondary preservice teachers experienced increases in self-efficacy, growth in STEM instructional practices, and greater motivation for teaching in high-need schools. Results will inform educational models for improving STEM-EL teaching, thereby addressing a crucial need to serve the growing national population of underserved students. 
    more » « less
  3. Despite limited success in broadening participation in engineering with rural and Appalachian youth, there remain challenges such as misunderstandings around engineering careers, misalignments with youth’s sociocultural background, and other environmental barriers. In addition, middle school science teachers may be unfamiliar with engineering or how to integrate engineering concepts into science lessons. Furthermore, teachers interested in incorporating engineering into their curriculum may not have the time or resources to do so. The result may be single interventions such as a professional development workshop for teachers or a career day for students. However, those are unlikely to cause major change or sustained interest development. To address these challenges, we have undertaken our NSF ITEST project titled, Virginia Tech Partnering with Educators and Engineers in Rural Schools (VT PEERS). Through this project, we sought to improve youth awareness of and preparation for engineering related careers and educational pathways. Utilizing regular engagement in engineering-aligned classroom activities and culturally relevant programming, we sought to spark an interest with some students. In addition, our project involves a partnership with teachers, school districts, and local industry to provide a holistic and, hopefully, sustainable influence. By engaging over time we aspired to promote sustainability beyond this NSF project via increased teacher confidence with engineering related activities, continued integration within their science curriculum, and continued relationships with local industry. From the 2017-2020 school years the project has been in seven schools across three rural counties. Each year a grade level was added; that is, the teachers and students from the first year remained for all three years. Year 1 included eight 6th grade science teachers, year 2 added eight 7th grade science teachers, and year 3 added three 8th grade science teachers and a career and technology teacher. The number of students increased from over 500 students in year 1 to over 2500 in year 3. Our three industry partners have remained active throughout the project. During the third and final year in the classrooms, we focused on the sustainable aspects of the project. In particular, on how the intervention support has evolved each year based on data, support requests from the school divisions, and in scaffolding “ownership” of the engineering activities. Qualitative data were used to support our understanding of teachers’ confidence to incorporate engineering into their lessons plans and how their confidence changed over time. Noteworthy, our student data analysis resulted in an instrument change for the third year; however due to COVID, pre and post data was limited to schools who taught on a semester basis. Throughout the project we have utilized the ITEST STEM Workforce Education Helix model to support a pragmatic approach of our research informing our practice to enable an “iterative relationship between STEM content development and STEM career development activities… within the cultural context of schools, with teachers supported by professional development, and through programs supported by effective partnerships.” For example, over the course of the project, scaffolding from the University leading interventions to teachers leading interventions occurred. 
    more » « less
  4. Baldwin, Amy; Danns, Donna; Howe, Chad (Ed.)
    In this presentation, we will analyze and explain how three university faculty designed an intensive 12-day science methods course for preservice teachers to learn about science. The course, which is part of the Culturally Sustaining Pedagogies in Science for English Language Learners project funded by the National Science Foundation, is focused on differentiating science and engineering content for emerging bilingual students (English/Spanish). After the course, teacher educators then implement this content with 4th - 8th grade students in the STEM Summer Scholars Institute, a 15-day academic enrichment program for emerging bilingual students. Not only will we explain how this differentiation toolkit is helping preservice teachers to build more inclusive and supporting environments in science in their current practice, but we also explore how other content, such asco-teaching models and science and engineering methodologies, shaped their teaching skills. The differentiation toolkit consists of the use of technology, hands-on materials, and multimodalities, and we examine how the preservice teacher-students interactions are structured following a culturally and linguistically relevant methodology for the classroom. Project faculty and teacher educators will discuss our experiences in implementing these methodologies (science and culturally and linguistically relevant practices) including areas of growth. 
    more » « less
  5. Research exploring the pedagogical content knowledge (PCK) of engineering teachers remains sparse and more studies are needed to highlight systematic ways in which teachers scaffold teaching of engineering in K-12 schools. As part of an NSF funded DRK-12 project conducting research on the implementation of the STEM-ID curricula, we investigated the PCK of six middle school engineering teachers implementing a semester-long curricula in their 6th, 7th, and 8th grade classrooms. Using the theoretical lens of the refined consensus model of PCK in science teaching, we present preliminary findings of ways in which teachers converted their personal PCK (pPCK) into enacted PCK (ePCK) in engineering. We provide implications for research and its impact on scaffolding effective engineering PCK for K-12 teaching. 
    more » « less