With the increased attention on integrating computer science concepts into K-12
curricula, there has been a growing investment into professional development
opportunities that prepare teachers to teach computer science principles. Yet, little
research exists on design features of professional development that help teachers gain the
computer science content, skills and teaching pedagogy that ultimately make an impact
on student learning and participation in the classroom. In this work we present a
professional development model for helping K-12 teachers integrate computer science
principles across the curriculum in a variety of content areas. We subsequently
investigate the ways in which the design features of the model promoted teacher learning
of computer science content and pedagogy.
more »
« less
This content will become publicly available on January 1, 2025
“Changing in the Moment”: Examining Enacted and Personal Pedagogical Content Knowledge of Engineering Teachers (Poster 1)
Research exploring the pedagogical content knowledge (PCK) of engineering teachers remains sparse and more studies are needed to highlight systematic ways in which teachers scaffold teaching of engineering in K-12 schools. As part of an NSF funded DRK-12 project conducting research on the implementation of the STEM-ID curricula, we investigated the PCK of six middle school engineering teachers implementing a semester-long curricula in their 6th, 7th, and 8th grade classrooms. Using the theoretical lens of the refined consensus model of PCK in science teaching, we present preliminary findings of ways in which teachers converted their personal PCK (pPCK) into enacted PCK (ePCK) in engineering. We provide implications for research and its impact on scaffolding effective engineering PCK for K-12 teaching.
more »
« less
- Award ID(s):
- 2101441
- NSF-PAR ID:
- 10536379
- Publisher / Repository:
- AERA
- Date Published:
- Format(s):
- Medium: X
- Location:
- Philadelphia, Pennsylvania
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Teachers’ pedagogical content knowledge (PCK) is a complex, multifaceted construct that is widely seen as foundational to the act of teaching. In this synthesis, we investigated how the National Science Foundation’s (NSF’s) recent research investments have advanced understanding and supported the development of teachers’ PCK in PK–12 mathematics and science education. In the 5 years from 2011 to 2015, NSF’s Discovery Research PK–12 program (DRK-12) funded or cofunded 27 projects relating to PCK, totaling $62 million awarded. These 27 DRK-12 projects primarily applied correlational/observational and longitudinal methods (rather than quasi-experimental or experimental methods), often targeting teaching in the middle school grades. Our synthesis of empirical findings focused on how these projects studied PCK, including its measurement, development, and relationship to teaching and student learning. Link to PDF: https://www.air.org/sites/default/files/2022-05/Teachers-Pedagogical-Content-Knowledge-in-Math-and-Science-April-2022.pdfmore » « less
-
Despite recent progress in the adoption of engineering at the K-12 level, the scarcity of high-quality engineering curricula remains a challenge. With support from a previous NSF grant, our research team iteratively developed the three-year middle school engineering curricula, STEM-ID. Through a series of contextualized challenges, the 18-week STEM-ID curricula incorporate foundational mathematics and science skills and practices and advanced manufacturing tools such as computer aided design (CAD) and 3D printing, while introducing engineering concepts like pneumatics, aeronautics, and robotics. Our current project, supported by an NSF DRK-12 grant, seeks to examine the effectiveness of STEM-ID when implemented in diverse schools within a large school district in the southeastern United States. This paper will present early findings of the project’s implementation research conducted over two school years with a total of ten engineering teachers in nine schools. Guided by the Innovation Implementation framework (Century & Cassata, 2014), our implementation research triangulates observation, interview, and survey data to describe overall implementation of STEM-ID as well as implementation of six critical components of the curricula: engaging students in the engineering design process (EDP), math-science integration, collaborative group work, contextualized challenges, utilization of advanced manufacturing technology, and utilization of curriculum materials. Implementation data provide clear evidence that each of the critical components of STEM-ID were evident as the curricula were enacted in participating schools. Our data indicate strong implementation of four critical components (utilization of materials, math-science integration, collaborative group work, and contextualized challenges) across teachers. Engaging students in the EDP and advanced-manufacturing technology were implemented, to varying degrees, by all but two teachers. As expected, implementation of critical components mirrored overall implementation patterns, with teachers who completed more of the curricula tending to implement the critical components more fully than those who did not complete the curricula. In addition to tracking implementation of critical components, the project is also interested in understanding contextual factors that influence enactment of the curricula, including characteristics of the STEM-ID curricula, teachers, and organizations (school and district). Interview and observation data suggest a number of teacher characteristics that may account for variations in implementation including teachers’ organization and time management skills, self-efficacy, and pedagogical content knowledge (PCK). Notably, prior teaching experience did not consistently translate into higher completion rates, emphasizing the need for targeted support regardless of teachers' backgrounds. This research contributes valuable insights into the challenges and successes of implementing engineering curricula in diverse educational settings.more » « less
-
Design considerations for a middle school computer science pedagogical content knowledge instrument.K-12 Computer Science (CS) education is developing rapidly but still lacks a comprehensive measure for CS teachers’ pedagogical content knowledge (PCK). We respond to this need by describing the design of a CS-PCK instrument for ‘Algorithms and Programming’ that measures three broad constructs: (a) teachers’ understanding of standards and standards alignment, (b) teachers’ formative assessment practices, and (c) teachers’ self-efficacy for teaching and assessing CS.more » « less
-
Although engineering is becoming increasingly important in K-12 education, previous research has demonstrated that, similar to the general population, K-12 teachers typically hold inaccurate perceptions of engineering, which affects their ability to provide students with relevant engineering experiences. Studies have shown that K-12 teachers often confuse the work of engineers with that of automotive mechanics or construction workers or assume that engineering is only for “super smart” students who are naturally gifted or who come from higher socioeconomic backgrounds. This indicates that many teachers do not understand the nature of engineering work and have stereotypical attitudes about who is qualified to be an engineer. These inaccurate perceptions of engineering among K-12 teachers may influence the way that teachers introduce engineering practices to their students and make connections between engineering and the other STEM disciplines. In addition, teacher self-efficacy has been shown to not only influence teachers’ willingness to engage with a particular topic, but also to have a significant influence on the motivation and achievement of their students. Research also indicates that high-efficacy teachers typically exert more effort and utilize more effective instructional strategies than low-efficacy teachers. The goal of this study was to examine the perceptions that pre-service K-12 teachers hold about engineers and engineering, and to further explore how those perceptions influence their self-efficacy with teaching engineering and beliefs about what skills and resources are necessary to teach engineering in a K-12 classroom. We first developed a survey instrument that included questions taken from two previously published instruments: the Design, Engineering, and Technology survey and the Teaching Engineering Self-Efficacy Scale for K-12 Teachers. Forty-two students enrolled in an undergraduate program at {Name Redacted} in which students simultaneously pursue a bachelor’s degree in a STEM field and K-12 teacher licensure completed the survey. Based on survey responses, six participants, representing a range of self-efficacy scores and majors, were selected to participate in interviews. In these interviews, participants were asked questions about their perceptions of engineers and were also asked to sort a list of characteristics based on whether they applied to engineers or not. Finally, interview participants were asked questions about their confidence in their ability to teach engineering and about what skills and/or resources they would require to be able to teach engineering in their future classrooms. The results of this study indicated that the participants’ perceptions of engineering and engineers did impact their self-efficacy with teaching engineering and their beliefs about how well engineering could be incorporated into other STEM subjects. A recurring theme among participants with low self-efficacy was a lack of exposure to engineering and inaccurate perceptions of the nature of engineering work. These pre-service teachers felt that they would not be able to teach engineering to K-12 students because they did not personally have much exposure to engineering or knowledge about engineering work. In future work, we will investigate how providing pre-service teachers with training in engineering education and exposure to engineers and engineering students impacts both their perceptions of engineering and self-efficacy with teaching engineering.more » « less