skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Silencing the Spark: CRISPR/Cas9 Genome Editing in Weakly Electric Fish
Electroreception and electrogenesis have changed in the evolutionary history of vertebrates. There is a striking degree of convergence in these independently derived phenotypes, which share a common genetic architecture. This is perhaps best exemplified by the numerous convergent features of gymnotiforms and mormyrids, two species-rich teleost clades that produce and detect weak electric fields and are called weakly electric fish. In the 50 years since the discovery that weakly electric fish use electricity to sense their surroundings and communicate, a growing community of scientists has gained tremendous insights into evolution of development, systems and circuits neuroscience, cellular physiology, ecology, evolutionary biology, and behavior. More recently, there has been a proliferation of genomic resources for electric fish. Use of these resources has already facilitated important insights with regards to the connection between genotype and phenotype in these species. A major obstacle to integrating genomics data with phenotypic data of weakly electric fish is a present lack of functional genomics tools. We report here a full protocol for performing CRISPR/Cas9 mutagenesis that utilizes endogenous DNA repair mechanisms in weakly electric fish. We demonstrate that this protocol is equally effective in both the mormyrid species Brienomyrus brachyistius and the gymnotiform Brachyhypopomus gauderio by using CRISPR/Cas9 to target indels and point mutations in the first exon of the sodium channel gene scn4aa. Using this protocol, embryos from both species were obtained and genotyped to confirm that the predicted mutations in the first exon of the sodium channel scn4aa were present. The knock-out success phenotype was confirmed with recordings showing reduced electric organ discharge amplitudes when compared to uninjected size-matched controls.  more » « less
Award ID(s):
1644965
PAR ID:
10161890
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of visualized experiments
Volume:
152
ISSN:
1940-087X
Page Range / eLocation ID:
e60253
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the last decade, the CRISPR/Cas9 bacterial virus defense system has been adapted as a user-friendly, efficient, and precise method for targeted mutagenesis in eukaryotes. Though CRISPR/Cas9 has proven effective in a diverse range of organisms, it is still most often used to create mutant lines in lab-reared genetic model systems. However, one major advantage of CRISPR/Cas9 mutagenesis over previous gene targeting approaches is that its high efficiency allows the immediate generation of near-null mosaic mutants. This feature could potentially allow genotype to be linked to phenotype in organisms with life histories that preclude the establishment of purebred genetic lines; a group that includes the vast majority of vertebrate species. Of particular interest to scholars of early vertebrate evolution are several long-lived and slow-maturing fishes that diverged from two dominant modern lineages, teleosts and tetrapods, in the Ordovician, or before. These early-diverging or “basal” vertebrates include the jawless cyclostomes, cartilaginous fishes, and various non-teleost ray-finned fishes. In addition to occupying critical phylogenetic positions, these groups possess combinations of derived and ancestral features not seen in conventional model vertebrates, and thus provide an opportunity for understanding the genetic bases of such traits. Here we report successful use of CRISPR/Cas9 mutagenesis in one such non-teleost fish, sterlet Acipenser ruthenus , a small species of sturgeon. We introduced mutations into the genes Tyrosinase , which is needed for melanin production, and Sonic hedgehog , a pleiotropic developmental regulator with diverse roles in early embryonic patterning and organogenesis. We observed disruption of both loci and the production of consistent phenotypes, including both near-null mutants’ various hypomorphs. Based on these results, and previous work in lamprey and amphibians, we discuss how CRISPR/Cas9 F0 mutagenesis may be successfully adapted to other long-lived, slow-maturing aquatic vertebrates and identify the ease of obtaining and injecting eggs and/or zygotes as the main challenges. 
    more » « less
  2. Park, Yoonseong (Ed.)
    Abstract CRISPR/Cas9 manipulations are possible in many insects and ever expanding. Nonetheless, success in one species and techniques developed for it are not necessarily applicable to other species. As such, the development and expansion of CRISPR-based (clustered regularly interspaced short palindromic repeats) genome-editing tools and methodologies are dependent upon direct experimentation. One useful technique is Cas9-dependent homologous recombination, which is a critical tool for studying gene function but also for developing pest related applications like gene drive. Here, we report our attempts to induce Cas9 homology directed repair (HDR) and subsequent gene drive in Tribolium castaneum (Herbst; Insecta: Coleoptera: Tenebrionidae). Utilizing constructs containing 1 or 2 target gRNAs in combination with Cas9 under 2 different promoters and corresponding homology arms, we found a high incidence of CRISPR/Cas9 induced mutations but no evidence of homologous recombination. Even though the generated constructs provide new resources for CRISPR/Cas9 modification of the Tribolium genome, our results suggest that additional modifications and increased sample sizes will be necessary to increase the potential and detection for HDR of the Tribolium genome. 
    more » « less
  3. Abstract CRISPR/Cas9 gene editing is effective in manipulating genetic loci in mammalian cell cultures and whole fish but efficient platforms applicable to fish cell lines are currently limited. Our initial attempts to employ this technology in fish cell lines using heterologous promoters or a ribonucleoprotein approach failed to indicate genomic alteration at targeted sites in a tilapia brain cell line (OmB). For potential use in a DNA vector approach, endogenous tilapia beta Actin (OmBAct), EF1 alpha (OmEF1a), and U6 (TU6) promoters were isolated. The strongest candidate promoter determined by EGFP reporter assay, OmEF1a, was used to drive constitutive Cas9 expression in a modified OmB cell line (Cas9-OmB1). Cas9-OmB1 cell transfection with vectors expressing gRNAs driven by the TU6 promoter achieved mutational efficiencies as high as 81% following hygromycin selection. Mutations were not detected using human and zebrafish U6 promoters demonstrating the phylogenetic proximity of U6 promoters as critical when used for gRNA expression. Sequence alteration to TU6 improved mutation rate and cloning efficiency. In conclusion, we report new tools for ectopic expression and a highly efficient, economical system for manipulation of genomic loci and evaluation of their causal relationship with adaptive cellular phenotypes by CRISPR/Cas9 gene editing in fish cells. 
    more » « less
  4. Eyre-Walker, Adam (Ed.)
    The coppery titi monkey (Plecturocebus cupreus) is an emerging nonhuman primate model system for behavioral and neurobiological research. At the same time, the almost entire absence of genomic resources for the species has hampered insights into the genetic underpinnings of the phenotypic traits of interest. To facilitate future genotype-to-phenotype studies, we here present a high-quality, fully annotated de novo genome assembly for the species with chromosome-length scaffolds spanning the autosomes and chromosome X (scaffold N50 = 130.8 Mb), constructed using data obtained from several orthologous short- and long-read sequencing and scaffolding techniques. With a base-level accuracy of ∼99.99% in chromosome-length scaffolds as well as benchmarking universal single-copy ortholog and k-mer completeness scores of >99.0% and 95.1% at the genome level, this assembly represents one of the most complete Pitheciidae genomes to date, making it an invaluable resource for comparative evolutionary genomics research to improve our understanding of lineage-specific changes underlying adaptive traits as well as deleterious mutations associated with disease. 
    more » « less
  5. Abstract The canonical non-homologous end joining (c-NHEJ) repair pathway, generally viewed as stochastic, has recently been shown to produce predictable outcomes in CRISPR-Cas9 mutagenesis. This predictability, mainly in 1-bp insertions and small deletions, has led to the development of in-silico prediction programs for various animal species. However, the predictability of CRISPR-induced mutation profiles across species remained elusive. Comparing CRISPR-Cas9 repair outcomes between human and plant species reveals significant differences in 1-bp insertion profiles. The high predictability observed in human cells links to the template-dependent activity of human Polλ. Yet plant Polλ exhibits dual activities, generating 1-bp insertions through both templated and non-templated manners. Polλ knockout in plants leads to deletion-only mutations, while its overexpression enhances 1-bp insertion rates. Two conserved motifs are identified to modulate plant Polλ‘s dual activities. These findings unveil the mechanism behind species-specific CRISPR-Cas9-induced insertion profiles and offer strategies for predictable, precise genome editing through c-NHEJ. 
    more » « less