skip to main content


Search for: All records

Award ID contains: 1644965

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Osteoglossiformes are an order of “bony tongue” fish considered the most primitive living order of teleosts. This review seeks to consolidate known hypotheses and identify gaps in the literature regarding the adaptive significance of diverse reproductive traits and behaviour of osteoglossiforms within the context of sperm competition and the wider lens of sexual selection. Many of the unusual traits observed in osteoglossiforms indicate low levels of sperm competition; most species have unpaired gonads, and mormyroids are the only known vertebrate species with aflagellate sperm. Several osteoglossiform families have reproductive anatomy associated with internal fertilization but perform external fertilization, which may be representative of the evolutionary transition from external to internal fertilization and putative trade‐offs between sperm competition and the environment. They also employ every type of parental care seen in vertebrates. Geographically widespread and basally situated within teleosts, osteoglossiforms present an effective study system for understanding how sperm competition and sexual selection have shaped the evolution of teleost reproductive behaviour, sperm and gonad morphology, fertilization strategies, courtship and paternal care, and sexual conflict. The authors suggest that the patterns seen in osteoglossiform reproduction are a microcosm of teleost reproductive diversity, potentially signifying the genetic plasticity that contributed to the adaptive radiation of teleost fishes.

     
    more » « less
  2. Solving the mystery of how a gene is exclusively expressed in muscle elucidates the evolution of electric organs in fishes. 
    more » « less
  3. Electroreception and electrogenesis have changed in the evolutionary history of vertebrates. There is a striking degree of convergence in these independently derived phenotypes, which share a common genetic architecture. This is perhaps best exemplified by the numerous convergent features of gymnotiforms and mormyrids, two species-rich teleost clades that produce and detect weak electric fields and are called weakly electric fish. In the 50 years since the discovery that weakly electric fish use electricity to sense their surroundings and communicate, a growing community of scientists has gained tremendous insights into evolution of development, systems and circuits neuroscience, cellular physiology, ecology, evolutionary biology, and behavior. More recently, there has been a proliferation of genomic resources for electric fish. Use of these resources has already facilitated important insights with regards to the connection between genotype and phenotype in these species. A major obstacle to integrating genomics data with phenotypic data of weakly electric fish is a present lack of functional genomics tools. We report here a full protocol for performing CRISPR/Cas9 mutagenesis that utilizes endogenous DNA repair mechanisms in weakly electric fish. We demonstrate that this protocol is equally effective in both the mormyrid species Brienomyrus brachyistius and the gymnotiform Brachyhypopomus gauderio by using CRISPR/Cas9 to target indels and point mutations in the first exon of the sodium channel gene scn4aa. Using this protocol, embryos from both species were obtained and genotyped to confirm that the predicted mutations in the first exon of the sodium channel scn4aa were present. The knock-out success phenotype was confirmed with recordings showing reduced electric organ discharge amplitudes when compared to uninjected size-matched controls. 
    more » « less