skip to main content


Title: Bayes Bots: Collective Bayesian Decision-Making in Decentralized Robot Swarms
We present a distributed Bayesian algorithm for robot swarms to classify a spatially distributed feature of an environment. This type of “go/no-go” decision appears in applications where a group of robots must collectively choose whether to take action, such as determining if a farm field should be treated for pests. Previous bio-inspired approaches to decentralized decision-making in robotics lack a statistical foundation, while decentralized Bayesian algorithms typically require a strongly connected network of robots. In contrast,our algorithm allows simple, sparsely distributed robots to quickly reach accurate decisions about a binary feature of their environment. We investigate the speed vs. accuracy tradeoff in decision-making by varying the algorithm’s parameters.We show that making fewer, less-correlated observations can improve decision-making accuracy, and that a well-chosen combination of prior and decision threshold allows for fast decisions with a small accuracy cost. Both speed and accuracy also improved with the addition of bio-inspired positive feed-back. This algorithm is also adaptable to the difficulty of the environment. Compared to a fixed-time benchmark algorithm with accuracy guarantees, our Bayesian approach resulted in equally accurate decisions, while adapting its decision time to the difficulty of the environment.  more » « less
Award ID(s):
1810758
NSF-PAR ID:
10161912
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Conference on Robotics and Automation (ICRA 2020)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The decentralized cognition of animal groups is both a challenging biological problem and a potential basis for bio-inspired design. The understanding of these systems and their application can benefit from modeling and analysis of the underlying algorithms. In this study, we define a modeling framework that can be used to formally represent all components of such algorithms. As an example application of the framework, we adapt to it the much-studied house-hunting algorithm used by emigrating colonies of Temnothorax ants to reach consensus on a new nest. We provide a Python simulator that encodes accurate individual behavior rules and produces simulated behaviors consistent with empirical observations, on both the individual and group levels. Critically, through multiple simulated experiments, our results highlight the value of individual sensitivity to site population in ensuring consensus. With the help of this social information, our model successfully reproduces experimental results showing the high cognitive capacity of colonies and their rational time investment during decision-making, and also predicts the pros and cons of social information with regard to the colonies’ ability to avoid and repair splits. Additionally, we use the model to make new predictions about several unstudied aspects of emigration behavior. Our results indicate a more complex relationship between individual behavior and the speed/accuracy trade-off than previously appreciated. The model proved relatively weak at resolving colony divisions among multiple sites, suggesting either limits to the ants’ ability to reach consensus, or an aspect of their behavior not captured in our model. 
    more » « less
  2. The decentralized cognition of animal groups is both a challenging biological problem and a potential basis for bio-inspired design. In this study, we investigated the house-hunting algorithm used by emigrating colonies of Temnothorax ants to reach consensus on a new nest. We developed a tractable model that encodes accurate individual behavior rules, and estimated our parameter values by matching simulated behaviors with observed ones on both the individual and group levels. We then used our model to explore a potential, but yet untested, component of the ants’ decision algorithm. Specifically, we examined the hypothesis that incorporating site population (the number of adult ants at each potential nest site) into individual perceptions of nest quality can improve emigration performance. Our results showed that attending to site population accelerates emigration and reduces the incidence of split decisions. This result suggests the value of testing empirically whether nest site scouts use site population in this way, in addition to the well demonstrated quorum rule. We also used our model to make other predictions with varying degrees of empirical support, including the high cognitive capacity of colonies and their rational time investment during decision-making. Additionally, we provide a versatile and easy-to-use Python simulator that can be used to explore other hypotheses or make testable predictions. It is our hope that the insights and the modeling tools can inspire further research from both the biology and computer science community. 
    more » « less
  3. null (Ed.)
    Complex service robotics scenarios entail unpredictable task appearance both in space and time. This requires robots to continuously relocate and imposes a trade-off between motion costs and efficiency in task execution. In such scenarios, multi-robot systems and even swarms of robots can be exploited to service different areas in parallel. An efficient deployment needs to continuously determine the best allocation according to the actual service needs, while also taking relocation costs into account when such allocation must be modified. For large scale problems, centrally predicting optimal allocations and movement paths for each robot quickly becomes infeasible. Instead, decentralized solutions are needed that allow the robotic system to self-organize and adaptively respond to the task demands. In this paper, we propose a distributed and asynchronous approach to simultaneous task assignment and path planning for robot swarms, which combines a bio-inspired collective decision-making process for the allocation of robots to areas to be serviced, and a search-based path planning approach for the actual routing of robots towards tasks to be executed. Task allocation exploits a hierarchical representation of the workspace, supporting the robot deployment to the areas that mostly require service. We investigate four realistic environments of increasing complexity, where each task requires a robot to reach a location and work for a specific amount of time. The proposed approach improves over two different baseline algorithms in specific settings with statistical significance, while showing consistently good results overall. Moreover, the proposed solution is robust to limited communication and robot failures. 
    more » « less
  4. The house hunting behavior of the Temnothorax albipennis ant allows the colony to explore several nest choices and agree on the best one. Their behavior serves as the basis for many bio-inspired swarm models to solve the same problem. However, many of the existing site selection models in both insect colony and swarm literature test the model’s accuracy and decision time only on setups where all potential site choices are equidistant from the swarm’s starting location. These models do not account for the geographic challenges that result from site choices with different geometry. For example, although actual ant colonies are capable of consistently choosing a higher quality, further site instead of a lower quality, closer site, existing models are much less accurate in this scenario. Existing models are also more prone to committing to a low quality site if it is on the path between the agents’ starting site and a higher quality site. We present a new model for the site selection problem and verify via simulation that is able to better handle these geographic challenges. Our results provide insight into the types of challenges site selection models face when distance is taken into account. Our work will allow swarms to be robust to more realistic situations where sites could be distributed in the environment in many different ways. 
    more » « less
  5. The house hunting behavior of the Temnothorax albipennis ant allows the colony to explore several nest choices and agree on the best one. Their behavior serves as the basis for many bio-inspired swarm models to solve the same problem. However, many of the existing site selection models in both insect colony and swarm literature test the model’s accuracy and decision time only on setups where all potential site choices are equidistant from the swarm’s starting location. These models do not account for the geographic challenges that result from site choices with different geometry. For example, although actual ant colonies are capable of consistently choosing a higher quality, further site instead of a lower quality, closer site, existing models are much less accurate in this scenario. Existing models are also more prone to committing to a low quality site if it is on the path between the agents’ starting site and a higher quality site. We present a new model for the site selection problem and verify via simulation that is able to better handle these geographic challenges. Our results provide insight into the types of challenges site selection models face when distance is taken into account. Our work will allow swarms to be robust to more realistic situations where sites could be distributed in the environment in many different ways. 
    more » « less