skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1810758

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Decision making in natural settings requires efficient exploration to handle uncertainty. Since associations between actions and outcomes are uncertain, animals need to balance the explorations and exploitation to select the actions that lead to maximal rewards. The computa- tional principles by which animal brains explore during decision-making are poorly understood. Our challenge here was to build a biologically plausible neural network that efficiently explores an environment and understands its effectiveness mathematically. One of the most evolutionarily conserved and important systems in decision making is basal ganglia (BG)1. In particular, the dopamine activities (DA) in BG is thought to represent reward prediction error (RPE) to facilitate reinforcement learning2. Therefore, our starting point is a cortico-BG loop motif3. This network adjusts exploration based on neuronal noises and updates its value estimate through RPE. To account for the fact that animals adjust exploration based on experience, we modified the network in two ways. First, it is recently discovered that DA does not simply represent the scalar RPE value; rather it represents RPE in a distribution4. We incorporated the distributional RPE framework and further the hypothesis, allowing an RPE distribution to update the posterior of action values encoded by cortico-BG connections. Second, it is known that the firing in the layer 2/3 of cortex fires is variable and sparse5. Our network thus included a random sparsification of cortical activity as a mechanism of sampling from this posterior for experience-based exploration. Combining these two features, our network is able to take the uncertainty of our value estimates into account to accomplish efficient exploration in a variety of environments. 
    more » « less
  2. We continue our study from Lynch and Mallmann-Trenn (Neural Networks, 2021), of how concepts that have hierarchical structure might be represented in brain-like neural networks, how these representations might be used to recognize the concepts, and how these representations might be learned. In Lynch and Mallmann-Trenn (Neural Networks, 2021), we considered simple tree-structured concepts and feed-forward layered networks. Here we extend the model in two ways: we allow limited overlap between children of different concepts, and we allow networks to include feedback edges. For these more general cases, we describe and analyze algorithms for recognition and algorithms for learning. 
    more » « less
  3. Animal brains evolved to optimize behavior in dynamic environments, flexibly selecting actions that maximize future rewards in different contexts. A large body of experimental work indicates that such optimization changes the wiring of neural circuits, appropriately mapping environmental input onto behavioral outputs. A major unsolved scientific question is how optimal wiring adjustments, which must target the connections responsible for rewards, can be accomplished when the relation between sensory inputs, action taken, environmental context with rewards is ambiguous. The credit assignment problem can be categorized into context-independent structural credit assignment and context-dependent continual learning. In this perspective, we survey prior approaches to these two problems and advance the notion that the brain’s specialized neural architectures provide efficient solutions. Within this framework, the thalamus with its cortical and basal ganglia interactions serves as a systems-level solution to credit assignment. Specifically, we propose that thalamocortical interaction is the locus of meta-learning where the thalamus provides cortical control functions that parametrize the cortical activity association space. By selecting among these control functions, the basal ganglia hierarchically guide thalamocortical plasticity across two timescales to enable meta-learning. The faster timescale establishes contextual associations to enable behavioral flexibility while the slower one enables generalization to new contexts. 
    more » « less
  4. We study the problem of house-hunting in ant colonies, where ants reach consensus on a new nest and relocate their colony to that nest, from a distributed computing perspective. We propose a house-hunting algorithm that is biologically inspired by Temnothorax ants. Each ant is modeled as a probabilistic agent with limited power, and there is no central control governing the ants. We show an O( log n) lower bound on the running time of our proposed house-hunting algorithm, where n is the number of ants. Furthermore, we show a matching upper bound of expected O( log n) rounds for environments with only one candidate nest for the ants to move to. Our work provides insights into the house-hunting process, giving a perspective on how environmental factors such as nest quality or a quorum rule can affect the emigration process. 
    more » « less
  5. Interactions across frontal cortex are critical for cognition. Animal studies suggest a role for mediodorsal thalamus (MD) in these interactions, but the computations performed and direct relevance to human decision making are unclear. Here, inspired by animal work, we extended a neural model of an executive frontal-MD network and trained it on a human decision-making task for which neuroimaging data were collected. Using a biologically-plausible learning rule, we found that the model MD thalamus compressed its cortical inputs (dorsolateral prefrontal cortex, dlPFC) underlying stimulus-response representations. Through direct feedback to dlPFC, this thalamic operation efficiently partitioned cortical activity patterns and enhanced task switching across different contingencies. To account for interactions with other frontal regions, we expanded the model to compute higher-order strategy signals outside dlPFC, and found that the MD offered a more efficient route for such signals to switch dlPFC activity patterns. Human fMRI data provided evidence that the MD engaged in feedback to dlPFC, and had a role in routing orbitofrontal cortex inputs when subjects switched behavioral strategy. Collectively, our findings contribute to the emerging evidence for thalamic regulation of frontal interactions in the human brain. 
    more » « less
  6. The decentralized cognition of animal groups is both a challenging biological problem and a potential basis for bio-inspired design. In this study, we investigated the house-hunting algorithm used by emigrating colonies of Temnothorax ants to reach consensus on a new nest. We developed a tractable model that encodes accurate individual behavior rules, and estimated our parameter values by matching simulated behaviors with observed ones on both the individual and group levels. We then used our model to explore a potential, but yet untested, component of the ants’ decision algorithm. Specifically, we examined the hypothesis that incorporating site population (the number of adult ants at each potential nest site) into individual perceptions of nest quality can improve emigration performance. Our results showed that attending to site population accelerates emigration and reduces the incidence of split decisions. This result suggests the value of testing empirically whether nest site scouts use site population in this way, in addition to the well demonstrated quorum rule. We also used our model to make other predictions with varying degrees of empirical support, including the high cognitive capacity of colonies and their rational time investment during decision-making. Additionally, we provide a versatile and easy-to-use Python simulator that can be used to explore other hypotheses or make testable predictions. It is our hope that the insights and the modeling tools can inspire further research from both the biology and computer science community. 
    more » « less
  7. Convolutional neural networks (CNNs), a class of deep learning models, have experienced recent success in modeling sensory cortices and retinal circuits through optimizing performance on machine learning tasks, otherwise known as task optimization. Previous research has shown task-optimized CNNs to be capable of providing explanations as to why the retina efficiently encodes natural stimuli and how certain retinal cell types are involved in efficient encoding. In our work, we sought to use task-optimized CNNs as a means of explaining computational mechanisms responsible for motion-selective retinal circuits. We designed a biologically constrained CNN and optimized its performance on a motion-classification task. We drew inspiration from psychophysics, deep learning, and systems neuroscience literature to develop a toolbox of methods to reverse engineer the computational mechanisms learned in our model. Through reverse engineering our model, we proposed a computational mechanism in which direction-selective ganglion cells and starburst amacrine cells, both experimentally observed retinal cell types, emerge in our model to discriminate among moving stimuli. This emergence suggests that direction-selective circuits in the retina are ecologically designed to robustly discriminate among moving stimuli. Our results and methods also provide a framework for how to build more interpretable deep learning models and how to understand them. 
    more » « less
  8. We present a formal, mathematical foundation for modeling and reasoning about the behavior of synchronous, stochastic Spiking Neural Networks (SNNs), which have been widely used in studies of neural computation. Our approach follows paradigms established in the field of concurrency theory. Our SNN model is based on directed graphs of neurons, classified as input, output, and internal neurons. We focus here on basic SNNs, in which a neuron’s only state is a Boolean value indicating whether or not the neuron is currently firing. We also define the external behavior of an SNN, in terms of probability distributions on its external firing patterns. We define two operators on SNNs: a composition operator, which supports modeling of SNNs as combinations of smaller SNNs, and a hiding operator, which reclassifies some output behavior of an SNN as internal. We prove results showing how the external behavior of a network built using these operators is related to the external behavior of its component networks. Finally, we definition the notion of a problem to be solved by an SNN, and show how the composition and hiding operators affect the problems that are solved by the networks. We illustrate our definitions with three examples: a Boolean circuit constructed from gates, an Attention network constructed from a Winner-Take-All network and a Filter network, and a toy example involving combining two networks in a cyclic fashion. 
    more » « less
  9. Neuromorphic computing would benefit from the utilization of improved customized hardware. However, the translation of neuromorphic algorithms to hardware is not easily accomplished. In particular, building superconducting neuromorphic systems requires expertise in both supercon- ducting physics and theoretical neuroscience, which makes such design particularly challenging. In this work, we aim to bridge this gap by presenting a tool and methodology to translate algorith- mic parameters into circuit specifications. We first show the correspondence between theoretical neuroscience models and the dynamics of our circuit topologies. We then apply this tool to solve a linear system and implement Boolean logic gates by creating spiking neural networks with our superconducting nanowire-based hardware. 
    more » « less
  10. The house hunting behavior of the Temnothorax albipennis ant allows the colony to explore several nest choices and agree on the best one. Their behavior serves as the basis for many bio-inspired swarm models to solve the same problem. However, many of the existing site selection models in both insect colony and swarm literature test the model’s accuracy and decision time only on setups where all potential site choices are equidistant from the swarm’s starting location. These models do not account for the geographic challenges that result from site choices with different geometry. For example, although actual ant colonies are capable of consistently choosing a higher quality, further site instead of a lower quality, closer site, existing models are much less accurate in this scenario. Existing models are also more prone to committing to a low quality site if it is on the path between the agents’ starting site and a higher quality site. We present a new model for the site selection problem and verify via simulation that is able to better handle these geographic challenges. Our results provide insight into the types of challenges site selection models face when distance is taken into account. Our work will allow swarms to be robust to more realistic situations where sites could be distributed in the environment in many different ways. 
    more » « less