skip to main content


Title: Understanding Broad Mg ii Variability in Quasars with Photoionization: Implications for Reverberation Mapping and Changing-look Quasars
Award ID(s):
1715579
NSF-PAR ID:
10161994
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
888
Issue:
2
ISSN:
1538-4357
Page Range / eLocation ID:
58
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present measurements of black hole masses and Eddington ratios (λEdd) for a sample of 38 bright (M1450< −24.4 mag) quasars at 5.8 ≲z≲ 7.5, derived from Very Large Telescope/X–shooter near–IR spectroscopy of their broad Civand Mgiiemission lines. The black hole masses (on average,MBH∼ 4.6 × 109M) and accretion rates (0.1 ≲λEdd≲ 1.0) are broadly consistent with that of similarly luminous 0.3 ≲z≲ 2.3 quasars, but there is evidence for a mild increase in the Eddington ratio abovez≳ 6. Combined with deep Atacama Large Millimeter/submillimeter Array (ALMA) observations of the [CII] 158μm line from the host galaxies and VLT/MUSE investigations of the extended Lyαhalos, this study provides fundamental clues to models of the formation and growth of the first massive galaxies and black holes. Compared to local scaling relations,z≳ 5.7 black holes appear to be over-massive relative to their hosts, with accretion properties that do not change with host galaxy morphologies. Assuming that the kinematics of theT∼ 104K gas, traced by the extended Lyαhalos, are dominated by the gravitational potential of the dark matter halo, we observe a similar relation between black hole mass and circular velocity as reported forz∼ 0 galaxies. These results paint a picture where the first supermassive black holes reside in massive halos atz≳ 6 and lead the first stages of galaxy formation by rapidly growing in mass with a duty cycle of order unity. The duty cycle needs to drastically drop toward lower redshifts, while the host galaxies continue forming stars at a rate of hundreds of solar masses per year, sustained by the large reservoirs of cool gas surrounding them.

     
    more » « less
  2. ABSTRACT

    We report the spectroscopic follow-up of 175 lensed quasar candidates selected using Gaia Data Release 2 observations following Paper III of this series. Systems include 86 confirmed lensed quasars and a further 17 likely lensed quasars based on imaging and/or similar spectra. We also confirm 11 projected quasar pairs and 11 physical quasar pairs, while 25 systems are left as unclassified quasar pairs – pairs of quasars at the same redshift, which could be either distinct quasars or potential lensed quasars. Especially interesting objects include eight quadruply imaged quasars of which two have BAL sources, an apparent triple, and a doubly lensed LoBaL quasar. The source redshifts and image separations of these new lenses range between 0.65–3.59 and 0.78–6.23 arcsec, respectively. We compare the known population of lensed quasars to an updated mock catalogue at image separations between 1 and 4 arcsec, showing a very good match at z < 1.5. At z > 1.5, only 47 per cent of the predicted number are known, with 56 per cent of these missing lenses at image separations below 1.5 arcsec. The missing higher redshift, small-separation systems will have fainter lensing galaxies, and are partially explained by the unclassified quasar pairs and likely lenses presented in this work, which require deeper imaging. Of the 11 new reported projected quasar pairs, 5 have impact parameters below 10 kpc, almost tripling the number of such systems, which can probe the innermost regions of quasar host galaxies through absorption studies. We also report four new lensed galaxies discovered through our searches, with source redshifts ranging from 0.62 to 2.79.

     
    more » « less
  3. ABSTRACT

    We search for ultraluminous Quasi-Stellar Objects (QSOs) at high redshift using photometry from the SkyMapper Southern Survey Data Release 3 (DR3), in combination with 2MASS, VHS DR6, VIKING DR5, AllWISE, and CatWISE2020, as well as parallaxes and proper motions from Gaia DR2 and eDR3. We report 142 newly discovered Southern QSOs at 3.8 < z < 5.5, of which 126 have M145 < −27 AB mag and are found in a search area of 14 486 deg2. This Southern sample, utilizing the Gaia astrometry to offset wider photometric colour criteria, achieves unprecedented completeness for an ultraluminous QSO search at high redshift. In combination with already known QSOs, we construct a sample that is >80 per cent complete for M145 < −27.33 AB mag at z = 4.7 and for M145 < −27.73 AB mag at z = 5.4. We derive the bright end of the QSO luminosity function at rest frame 145 nm for z = 4.7–5.4 and measure its slope to be β = −3.60 ± 0.37 and β = −3.38 ± 0.32 for two different estimates of the faint-end QSO density adopted from the literature. We also present the first z ∼ 5 QSO luminosity function at rest frame 300 nm.

     
    more » « less
  4. null (Ed.)