skip to main content


Title: Spectral variability of a sample of extreme variability quasars and implications for the Mg ii broad-line region
ABSTRACT We present new Gemini/GMOS optical spectroscopy of 16 extreme variability quasars (EVQs) that dimmed by more than 1.5 mag in the g band between the Sloan Digital Sky Survey (SDSS) and the Dark Energy Survey epochs (separated by a few years in the quasar rest frame). These EVQs are selected from quasars in the SDSS Stripe 82 region, covering a redshift range of 0.5 < z < 2.1. Nearly half of these EVQs brightened significantly (by more than 0.5 mag in the g band) in a few years after reaching their previous faintest state, and some EVQs showed rapid (non-blazar) variations of greater than 1–2 mag on time-scales of only months. To increase sample statistics, we use a supplemental sample of 33 EVQs with multi-epoch spectra from SDSS that cover the broad Mg ii λ2798 line. Leveraging on the large dynamic range in continuum variability between the multi-epoch spectra, we explore the associated variations in the broad Mg ii line, whose variability properties have not been well studied before. The broad Mg ii flux varies in the same direction as the continuum flux, albeit with a smaller amplitude, which indicates at least some portion of Mg ii is reverberating to continuum changes. However, the full width at half-maximum (FWHM) of Mg ii does not vary accordingly as continuum changes for most objects in the sample, in contrast to the case of the broad Balmer lines. Using the width of broad Mg ii to estimate the black hole mass with single epoch spectra therefore introduces a luminosity-dependent bias.  more » « less
Award ID(s):
1715579
NSF-PAR ID:
10161997
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
493
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
5773 to 5787
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a high-cadence multiepoch analysis of dramatic variability of three broad emission lines (Mgii, Hβ, and Hα) in the spectra of the luminous quasar (λLλ(5100 Å) = 4.7 × 1044erg s−1) SDSS J141041.25+531849.0 atz= 0.359 with 127 spectroscopic epochs over nine years of monitoring (2013–2022). We observe anticorrelations between the broad emission-line widths and flux in all three emission lines, indicating that all three broad emission lines “breathe” in response to stochastic continuum variations. We also observe dramatic radial velocity shifts in all three broad emission lines, ranging from Δv∼ 400 km s−1to ∼800 km s−1, that vary over the course of the monitoring period. Our preferred explanation for the broad-line variability is complex kinematics in the gas in the broad-line region. We suggest a model for the broad-line variability that includes a combination of gas inflow with a radial gradient, an azimuthal asymmetry (e.g., a hot spot), superimposed on the stochastic flux-driven changes to the optimal emission region (“line breathing”). Similar instances of line-profile variability due to complex gas kinematics around quasars are likely to represent an important source of false positives in radial velocity searches for binary black holes, which typically lack the kind of high-cadence data we analyze here. The long-duration, wide-field, and many-epoch spectroscopic monitoring of SDSS-V BHM-RM provides an excellent opportunity for identifying and characterizing broad emission-line variability, and the inferred nature of the inner gas environment, of luminous quasars.

     
    more » « less
  2. Abstract

    Active galactic nuclei (AGN) can vary significantly in their rest-frame optical/UV continuum emission, and with strong associated changes in broad line emission, on much shorter timescales than predicted by standard models of accretion disks around supermassive black holes. Most suchchanging-lookorchanging-stateAGN—and at higher luminosities, changing-look quasars (CLQs)—have been found via spectroscopic follow-up of known quasars showing strong photometric variability. The Time Domain Spectroscopic Survey of the Sloan Digital Sky Survey IV (SDSS-IV) includes repeat spectroscopy of large numbers of previously known quasars, many selected irrespective of photometric variability, and with spectral epochs separated by months to decades. Our visual examination of these repeat spectra for strong broad line variability yielded 61 newly discovered CLQ candidates. We quantitatively compare spectral epochs to measure changes in continuum and Hβbroad line emission, finding 19 CLQs, of which 15 are newly recognized. The parent sample includes only broad line quasars, so our study tends to find objects that have dimmed, i.e., turn-off CLQs. However, we nevertheless find four turn-on CLQs that meet our criteria, albeit with broad lines in both dim and bright states. We study the response of Hβand Mgiiemission lines to continuum changes. The Eddington ratios of CLQs are low, and/or their Hβbroad line width is large relative to the overall quasar population. Repeat quasar spectroscopy in the upcoming SDSS-V black hole Mapper program will reveal significant numbers of CLQs, enhancing our understanding of the frequency and duty cycle of such strong variability, and the physics and dynamics of the phenomenon.

     
    more » « less
  3. Abstract Studies of rest-frame optical emission in quasars at z > 6 have historically been limited by the wavelengths accessible by ground-based telescopes. The James Webb Space Telescope (JWST) now offers the opportunity to probe this emission deep into the reionization epoch. We report the observations of eight quasars at z > 6.5 using the JWST/NIRCam Wide Field Slitless Spectroscopy as a part of the “A SPectroscopic survey of biased halos In the Reionization Era (ASPIRE)” program. Our JWST spectra cover the quasars’ emission between rest frame ∼4100 and 5100 Å. The profiles of these quasars’ broad H β emission lines span a full width at half maximum from 3000 to 6000 km s −1 . The H β -based virial black hole (BH) masses, ranging from 0.6 to 2.1 billion solar masses, are generally consistent with their Mg ii -based BH masses. The new measurements based on the more reliable H β tracer thus confirm the existence of a billion solar-mass BHs in the reionization epoch. In the observed [O iii ] λ λ 4960,5008 doublets of these luminous quasars, broad components are more common than narrow core components (≤ 1200 km s −1 ), and only one quasar shows stronger narrow components than broad. Two quasars exhibit significantly broad and blueshifted [O iii ] emission, thought to trace galactic-scale outflows, with median velocities of −610 and −1430 km s −1 relative to the [C ii ] 158 μ m line. All eight quasars show strong optical Fe ii emission and follow the eigenvector 1 relations defined by low-redshift quasars. The entire ASPIRE program will eventually cover 25 quasars and provide a statistical sample for the studies of the BHs and quasar spectral properties. 
    more » « less
  4. ABSTRACT We study the optical light curves – primarily probing the variable emission from the accretion disc – of ∼900 extreme variability quasars (EVQs, with maximum flux variations more than 1 mag) over an observed-frame baseline of ∼16 yr using public data from the SDSS Stripe 82, PanSTARRS-1 and the Dark Energy Survey. We classify the multiyear long-term light curves of EVQs into three categories roughly in the order of decreasing smoothness: monotonic decreasing or increasing (3.7 per cent), single broad peak and dip (56.8 per cent), and more complex patterns (39.5 per cent). The rareness of monotonic cases suggests that the major mechanisms driving the extreme optical variability do not operate over time-scales much longer than a few years. Simulated light curves with a damped random walk model generally under-predict the first two categories with smoother long-term trends. Despite the different long-term behaviours of these EVQs, there is little dependence of the long-term trend on the physical properties of quasars, such as their luminosity, BH mass, and Eddington ratio. The large dynamic range of optical flux variability over multiyear time-scales of these EVQs allows us to explore the ensemble correlation between the short-term (≲6 months) variability and the seasonal-average flux across the decade-long baseline (the rms-mean flux relation). We find that unlike the results for X-ray variability studies, the linear short-term flux variations do not scale with the seasonal-average flux, indicating different mechanisms that drive the short-term flickering and long-term extreme variability of accretion disc emission. Finally, we present a sample of 16 EVQs, where the approximately bell-shaped large amplitude variation in the light curve can be reasonably well fit by a simple microlensing model. 
    more » « less
  5. ABSTRACT

    Soft X-ray emission (0.5–2.0 keV) plays a pivotal role in regulating the optical and ultraviolet (UV) emission in the active galactic nuclei (AGNs). We collected a sample of 1811 AGNs from the SDSS database and obtained various parameters of Balmer lines, optical continuum, Mg ii line & UV continuum and studied their dependencies on soft X-ray luminosity. Based on the linear regression analysis, we found that FWHM$_{\rm {Mg\,\,\small {II}}}$ ∝ FWHM$_{\text{H}\beta }^{0.554}$ suggesting that UV emission is arising from a region relatively outside the broad-line region (BLR) associated to the Hβ emission and found a strong correlation between optical and UV luminosities (L$_{\rm {Mg\,\,\small {II}}}$ ∝ $L_{\rm {H}\beta }^{0.822}$). It was noticed that the dependency of optical continuum luminosities on soft excess changes with the redshift (LX ∝ L$^{0.596}_{5100\, \mathring{\rm A}}$ for z < 0.5 and LX ∝ L$^{0.429}_{5100\, \mathring{\rm A}}$ for z > 0.5). The full width at half-maximum components of Hβ and Mg ii core components were found to be virialized and is not affected by the soft excess emission whereas the wings of Mg ii display a dependency. We estimated a relation viz. LX ∝L$^{0.520}_{3000\, \mathring{\rm A}}$ FWHM$^{0.525}_{\rm {Mg\,\,\small {II}}}$ and found to be well in agreement with a proposed physical scenario. All the derived relations were used to understand the intermodulating association of the BLR and disc in the AGNs.

     
    more » « less