Abstract Over three decades of reverberation mapping (RM) studies on local broad-line active galactic nuclei (AGNs) have measured reliable black hole (BH) masses for >100 AGNs. These RM measurements reveal a significant correlation between the Balmer broad-line region (BLR) size and AGN optical luminosity (theR–Lrelation). Recent RM studies for AGN samples with more diverse BH parameters (e.g., mass and Eddington ratio) reveal a substantial intrinsic dispersion around the averageR–Lrelation, suggesting that variations in the broadband spectrum, driven by accretion parameters and other factors such as the cloud distribution and inclination, significantly influence the measuredR–Lrelation. Here we perform a detailed photoionization investigation of expected broad-line properties as functions of accretion parameters using AGN continuum models fromqsosed. We compare theoretical predictions with observations of a sample of 67z ≲ 0.5 reverberation-mapped AGNs with rest-frame optical and UV spectra in the moderate-accretion regime (Eddington ratioλEdd ≡ L/LEdd < 0.5). The UV/optical line strengths and their dependences on accretion parameters are reasonably well reproduced by the locally optimally emitting cloud photoionization models. We provide quantitative recipes using optical/UV line flux ratios to infer the unobservable ionizing continuum. Additionally, photoionization models with universal values of ionization parameter ( ) and hydrogen density ( ) can qualitatively reproduce the observed globalR–Lrelation for the current RM AGN sample. However, such models fail to reproduce the observed decrease in BLR size with increasingL/LEddat fixed optical luminosity, implying that gas density or BLR structure may systematically change with accretion rate. 
                        more » 
                        « less   
                    
                            
                            The Sloan Digital Sky Survey Reverberation Mapping Project: Key Results
                        
                    
    
            Abstract We present the final data from the Sloan Digital Sky Survey (SDSS) Reverberation Mapping (RM) project, a precursor to the SDSS-V Black Hole Mapper RM program. This data set includes 11 yr photometric and 7 yr spectroscopic light curves for 849 broad-line quasars over a redshift range of 0.1 <z< 4.5 and a luminosity range ofLbol= 1044−47.5erg s−1, along with spectral and variability measurements. We report 23, 81, 125, and 110 RM lags (relative to optical continuum variability) for broad Hα, Hβ, Mgii, and Civusing the SDSS-RM sample, spanning much of the luminosity and redshift ranges of the sample. Using 30 low-redshift RM active galactic nuclei with dynamical-modeling black hole masses, we derive a new estimate of the average virial factor of for the line dispersion measured from the rms spectrum. The intrinsic scatter of individual virial factors is 0.31 ± 0.07 dex, indicating a factor of 2 systematic uncertainty in RM black hole masses. Our lag measurements reveal significantR–Lrelations for Hβand Mgiiat high redshift, consistent with the latest measurements based on heterogeneous samples. While we are unable to robustly constrain the slope of theR–Lrelation for Civgiven the limited dynamic range in luminosity, we found substantially larger scatter in Civlags at fixedL1350. Using the SDSS-RM lag sample, we derive improved single-epoch (SE) mass recipes for Hβ, Mgii, and Civ, which are consistent with their respective RM masses as well as between the SE recipes from two different lines, over the luminosity range probed by our sample. The new Hβand Mgiirecipes are approximately unbiased estimators at given RM masses, but there are systematic biases in the Civrecipe. The intrinsic scatter of SE masses around RM masses is ∼0.45 dex for Hβand Mgii, increasing to ∼0.58 dex for Civ. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10507385
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Supplement Series
- Volume:
- 272
- Issue:
- 2
- ISSN:
- 0067-0049
- Format(s):
- Medium: X Size: Article No. 26
- Size(s):
- Article No. 26
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We use medium- and high-resolution spectroscopy of close pairs of quasars to analyze the circumgalactic medium (CGM) surrounding 32 damped Lyαabsorption systems (DLAs). The primary quasar sightline in each pair probes an intervening DLA in the redshift range 1.6 <zabs< 3.5, such that the secondary sightline probes absorption from Lyαand a large suite of metal-line transitions (including Oi, Cii, Civ, Siii, and Siiv) in the DLA host galaxy’s CGM at transverse distances 24 kpc ≤R⊥≤ 284 kpc. Analysis of Lyαin the CGM sightlines shows an anticorrelation betweenR⊥and Hicolumn density (NHI) with 99.8% confidence, similar to that observed around luminous galaxies. The incidences of Ciiand SiiiwithN> 1013cm−2within 100 kpc of DLAs are larger by 2σthan those measured in the CGM of Lyman break galaxies (Cf(NCII) > 0.89 and ). Metallicity constraints derived from ionic ratios for nine CGM systems with negligible ionization corrections andNHI> 1018.5cm−2show a significant degree of scatter (with metallicities/limits across the range ), suggesting inhomogeneity in the metal distribution in these environments. Velocity widths of Civλ1548 and low-ionization metal species in the DLA versus CGM sightlines are strongly (>2σ) correlated, suggesting that they trace the potential well of the host halo overR⊥≲ 300 kpc scales. At the same time, velocity centroids for Civλ1548 differ in DLA versus CGM sightlines by >100 km s−1for ∼50% of velocity components, but few components have velocities that would exceed the escape velocity assuming dark matter host halos of ≥1012M⊙.more » « less
- 
            Abstract We use Hubble Space Telescope Wide Field Camera 3 G102 and G141 grism spectroscopy to measure rest-frame optical emission-line ratios of 533 galaxies atz∼ 1.5 in the CANDELS LyαEmission at Reionization survey. We compare [Oiii]/Hβversus [Sii]/(Hα+ [Nii]) as an “unVO87” diagram for 461 galaxies and [Oiii]/Hβversus [Neiii]/[Oii] as an “OHNO” diagram for 91 galaxies. The unVO87 diagram does not effectively separate active galactic nuclei (AGN) and [Nev] sources from star-forming galaxies, indicating that the unVO87 properties of star-forming galaxies evolve with redshift and overlap with AGN emission-line signatures atz> 1. The OHNO diagram does effectively separate X-ray AGN and [Nev]-emitting galaxies from the rest of the population. We find that the [Oiii]/Hβline ratios are significantly anticorrelated with stellar mass and significantly correlated with , while [Sii]/(Hα+ [Nii]) is significantly anticorrelated with . Comparison with MAPPINGS V photoionization models indicates that these trends are consistent with lower metallicity and higher ionization in low-mass and high-star formation rate (SFR) galaxies. We do not find evidence for redshift evolution of the emission-line ratios outside of the correlations with mass and SFR. Our results suggest that the OHNO diagram of [Oiii]/Hβversus [Neiii]/[Oii] will be a useful indicator of AGN content and gas conditions in very high-redshift galaxies to be observed by the James Webb Space Telescope.more » « less
- 
            Abstract We present rest-frame optical emission-line flux ratio measurements for fivez> 5 galaxies observed by the James Webb Space Telescope Near-Infared Spectrograph (NIRSpec) in the SMACS 0723 Early Release Observations. We add several quality-control and post-processing steps to the NIRSpec pipeline reduction products in order to ensure reliablerelativeflux calibration of emission lines that are closely separated in wavelength, despite the uncertainabsolutespectrophotometry of the current version of the reductions. Compared toz∼ 3 galaxies in the literature, thez> 5 galaxies have similar [Oiii]λ5008/Hβratios, similar [Oiii]λ4364/Hγratios, and higher (∼0.5 dex) [NeIII]λ3870/[OII]λ3728 ratios. We compare the observations to MAPPINGS V photoionization models and find that the measured [NeIII]λ3870/[OII]λ3728, [Oiii]λ4364/Hγ, and [Oiii]λ5008/Hβemission-line ratios are consistent with an interstellar medium (ISM) that has very high ionization ( , units of cm s−1), low metallicity (Z/Z⊙≲ 0.2), and very high pressure ( , units of cm−3). The combination of [Oiii]λ4364/Hγand [Oiii]λ(4960 + 5008)/Hβline ratios indicate very high electron temperatures of , further implying metallicities ofZ/Z⊙≲ 0.2 with the application of low-redshift calibrations for “Te-based” metallicities. These observations represent a tantalizing new view of the physical conditions of the ISM in galaxies at cosmic dawn.more » « less
- 
            A<sc>bstract</sc> Results are presented from a search for the Higgs boson decay H→Zγ, where Z→ ℓ+ℓ−withℓ= e or μ. The search is performed using a sample of proton-proton (pp) collision data at a center-of-mass energy of 13 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb−1. Events are assigned to mutually exclusive categories, which exploit differences in both event topology and kinematics of distinct Higgs production mechanisms to enhance signal sensitivity. The signal strengthμ, defined as the product of the cross section and the branching fraction$$ \left[\sigma \left(\textrm{pp}\to \textrm{H}\right)\mathcal{B}\left(\textrm{H}\to \textrm{Z}\upgamma \right)\right] $$ relative to the standard model prediction, is extracted from a simultaneous fit to theℓ+ℓ−γ invariant mass distributions in all categories and is measured to beμ= 2.4 ± 0.9 for a Higgs boson mass of 125.38 GeV. The statistical significance of the observed excess of events is 2.7 standard deviations. This measurement corresponds to$$ \left[\sigma \left(\textrm{pp}\to \textrm{H}\right)\mathcal{B}\left(\textrm{H}\to \textrm{Z}\upgamma \right)\right]=0.21\pm 0.08 $$ pb. The observed (expected) upper limit at 95% confidence level onμis 4.1 (1.8), where the expected limit is calculated under the background-only hypothesis. The ratio of branching fractions$$ \mathcal{B}\left(\textrm{H}\to \textrm{Z}\upgamma \right)/\mathcal{B}\left(\textrm{H}\to \upgamma \upgamma \right) $$ is measured to be$$ {1.5}_{-0.6}^{+0.7} $$ , which agrees with the standard model prediction of 0.69 ± 0.04 at the 1.5 standard deviation level.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
