To address biophysical principles and lipid interactions that underlie the properties of membrane proteins, modifications that vary the neighbors of tryptophan residues in the highly dynamic transmembrane helix of GW4,20ALP23 (acetyl‐GGAW4A(LA)6LAW20AGA‐amide) were examined using deuterium NMR spectroscopy. It was found that L5,19GW4,20ALP23, a sequence isomer of the low to moderately dynamic GW5,19ALP23, remains highly dynamic. By contrast, a removal of W4 to produce F4,5GW20ALP23 restores a low level of dynamic averaging, similar to that of the F4,5GW19ALP23 helix. Interestingly, a high level of dynamic averaging requires the presence of both tryptophan residues W4 and W20, on opposite faces of the helix, and does not depend on whether residue 5 is Leu or Ala. Aspects of helix unwinding and potential oligomerization are discussed with respect to helix dynamic averaging and the locations of particular residues at a phosphocholine membrane interface.
more »
« less
Comparing Interfacial Trp, Interfacial His and pH Dependence for the Anchoring of Tilted Transmembrane Helical Peptides
Charged and aromatic amino acid residues, being enriched toward the terminals of membrane-spanning helices in membrane proteins, help to stabilize particular transmembrane orientations. Among them, histidine is aromatic and can be positively charge at low pH. To enable investigations of the underlying protein-lipid interactions, we have examined the effects of single or pairs of interfacial histidine residues using the constructive low-dynamic GWALP23 (acetyl-GG2ALW5LALALALALALALW19LAG22A-amide) peptide framework by incorporating individual or paired histidines at locations 2, 5, 19 or 22. Analysis of helix orientation by means of solid-state 2H NMR spectra of labeled alanine residues reveals marked differences with H2,22 compared to W2,22. Nevertheless, the properties of membrane-spanning H2,22WALP23 helices show little pH dependence and are similar to those having Gly, Arg or Lys at positions 2 and 22. The presence of H5 or H19 influences the helix rotational preference but not the tilt magnitude. H5 affects the helical integrity, as residue 7 unwinds from the core helix; yet once again the helix orientation and dynamic properties show little sensitivity to pH. The overall results reveal that the detailed properties of transmembrane helices depend upon the precise locations of interfacial histidine residues.
more »
« less
- Award ID(s):
- 1713242
- PAR ID:
- 10162039
- Date Published:
- Journal Name:
- Biomolecules
- Volume:
- 10
- Issue:
- 2
- ISSN:
- 2218-273X
- Page Range / eLocation ID:
- 273
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cell membranes are responsible for a range of biological processes that require interactions between lipids and proteins. While the effects of lipids on proteins are becoming better understood, our knowledge of how protein conformational changes influence membrane dynamics remains rudimentary. Here, we performed experiments and computer simulations to study the dynamic response of a lipid membrane to changes in the conformational state of pH-low insertion peptide (pHLIP), which transitions from a surface-associated (SA) state at neutral or basic pH to a transmembrane (TM) α-helix under acidic conditions. Our results show that TM-pHLIP significantly slows down membrane thickness fluctuations due to an increase in effective membrane viscosity. Our findings suggest a possible membrane regulatory mechanism, where the TM helix affects lipid chain conformations, and subsequently alters membrane fluctuations and viscosity.more » « less
-
The orientation of integral membrane proteins (IMPs) with respect to the membrane is established during protein synthesis and insertion into the membrane. After synthesis, IMP orientation is thought to be fixed due to the thermodynamic barrier for “flipping” protein loops or helices across the hydrophobic core of the membrane in a process analogous to lipid flip-flop. A notable exception is EmrE, a homodimeric IMP with an N-terminal transmembrane helix that can flip across the membrane until flipping is arrested upon dimerization. Understanding the features of the EmrE sequence that permit this unusual flipping behavior would be valuable for guiding the design of synthetic materials capable of translocating or flipping charged groups across lipid membranes. To elucidate the molecular mechanisms underlying flipping in EmrE and derive bioinspired design rules, we employ atomistic molecular dynamics simulations and enhanced sampling techniques to systematically investigate the flipping of truncated segments of EmrE. Our results demonstrate that a membrane-exposed charged glutamate residue at the center of the N-terminal helix lowers the energetic barrier for flipping (from ~12.1 kcal mol-1 to ~5.4 kcal mol-1) by stabilizing water defects and minimizing membrane perturbation. Comparative analysis reveals that the marginal hydrophobicity of this helix, rather than the marginal hydrophilicity of its loop, is the key determinant of flipping propensity. Our results further indicate that interhelical hydrogen bonding upon dimerization inhibits flipping. These findings establish several bioinspired design principles to govern flipping in related materials: (1) marginally hydrophobic helices with membrane-exposed charged groups promote flipping, (2) modulating protonation states of membrane-exposed groups tunes flipping efficiency, and (3) interhelical hydrogen bonding can be leveraged to arrest flipping. These insights provide a foundation for engineering synthetic peptides, engineered proteins, and biomimetic nanomaterials with controlled flipping or translocation behavior for applications in intracellular drug delivery and membrane protein design.more » « less
-
null (Ed.)Positive-strand RNA viruses universally remodel host intracellular membranes to form membrane-bound viral replication complexes, where viral offspring RNAs are synthesized. In the majority of cases, viral replication proteins are targeted to and play critical roles in the modulation of the designated organelle membranes. Many viral replication proteins do not have transmembrane domains, but contain single or multiple amphipathic alpha-helices. It has been conventionally recognized that these helices serve as an anchor for viral replication protein to be associated with membranes. We report here that a peptide representing the amphipathic α-helix at the N-terminus of the poliovirus 2C protein not only binds to liposomes, but also remodels spherical liposomes into tubules. The membrane remodeling ability of this amphipathic alpha-helix is similar to that recognized in other amphipathic alpha-helices from cellular proteins involved in membrane remodeling, such as BAR domain proteins. Mutations affecting the hydrophobic face of the amphipathic alpha-helix severely compromised membrane remodeling of vesicles with physiologically relevant phospholipid composition. These mutations also affected the ability of poliovirus to form plaques indicative of reduced viral replication, further underscoring the importance of membrane remodeling by the amphipathic alpha-helix in possible relation to the formation of viral replication complexes.more » « less
-
Single-molecule force spectroscopy methods, such as AFM and magnetic tweezers, have proved extremely beneficial in elucidating folding pathways for soluble and membrane proteins. To identify factors that determine the force rupture levels in force-induced membrane protein unfolding, we applied our near-atomic-level Upside molecular dynamics package to study the vertical and lateral pulling of bacteriorhodopsin (bR) and GlpG, respectively. With our algorithm, we were able to selectively alter the magnitudes of individual interaction terms and identify that, for vertical pulling, hydrogen bond strength had the strongest effect, whereas other non-bonded protein and membrane–protein interactions had only moderate influences, except for the extraction of the last helix where the membrane–protein interactions had a stronger influence. The up–down topology of the transmembrane helices caused helices to be pulled out as pairs. The rate-limiting rupture event often was the loss of H-bonds and the ejection of the first helix, which then propagated tension to the second helix, which rapidly exited the bilayer. The pulling of the charged linkers across the membrane had minimal influence, as did changing the bilayer thickness. For the lateral pulling of GlpG, the rate-limiting rupture corresponded to the separation of the helices within the membrane, with the H-bonds generally being broken only afterward. Beyond providing a detailed picture of the rupture events, our study emphasizes that the pulling mode greatly affects the factors that determine the forces needed to unfold a membrane protein.more » « less
An official website of the United States government

