skip to main content


Title: K-space algorithmic reconstruction (KAREN): a robust statistical methodology to separate Bragg and diffuse scattering
Diffuse scattering occurring in the Bragg diffraction pattern of a long-range-ordered structure represents local deviation from the governing regular lattice. However, interpreting the real-space structure from the diffraction pattern presents a significant challenge because of the dramatic difference in intensity between the Bragg and diffuse components of the total scattering function. In contrast to the sharp Bragg diffraction, the diffuse signal has generally been considered to be a weak expansive or continuous background signal. Herein, using 1D and 2D models, it is demonstrated that diffuse scattering in fact consists of a complex array of high-frequency features that must not be averaged into a low-frequency background signal. To evaluate the actual diffuse scattering effectively, an algorithm has been developed that uses robust statistics and traditional signal processing techniques to identify Bragg peaks as signal outliers which can be removed from the overall scattering data and then replaced by statistically valid fill values. This method, described as a `K-space algorithmic reconstruction' (KAREN), can identify Bragg reflections independent of prior knowledge of a system's unit cell. KAREN does not alter any data other than that in the immediate vicinity of the Bragg reflections, and reconstructs the diffuse component surrounding the Bragg peaks without introducing discontinuities which induce Fourier ripples or artifacts from underfilling `punched' voids. The KAREN algorithm for reconstructing diffuse scattering provides demonstrably better resolution than can be obtained from previously described punch-and-fill methods. The superior structural resolution obtained using the KAREN method is demonstrated by evaluating the complex ordered diffuse scattering observed from the neutron diffraction of a single plastic crystal of CBr 4 using pair distribution function analysis.  more » « less
Award ID(s):
1709370
NSF-PAR ID:
10162234
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Applied Crystallography
Volume:
53
Issue:
1
ISSN:
1600-5767
Page Range / eLocation ID:
159 to 169
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. X-ray crystallography has been invaluable in delivering structural information about proteins. Previously, an approach has been developed that allows high-quality X-ray diffraction data to be obtained from protein crystals at and above room temperature. Here, this previous work is built on and extended by showing that high-quality anomalous signal can be obtained from single protein crystals using diffraction data collected at 220 K up to physiological temperatures. The anomalous signal can be used to directly determine the structure of a protein,i.e.to phase the data, as is routinely performed under cryoconditions. This ability is demonstrated by obtaining diffraction data from model lysozyme, thaumatin and proteinase K crystals, the anomalous signal from which allowed their structures to be solved experimentally at 7.1 keV X-ray energy and at room temperature with relatively low data redundancy. It is also demonstrated that the anomalous signal from diffraction data obtained at 310 K (37°C) can be used to solve the structure of proteinase K and to identify ordered ions. The method provides useful anomalous signal at temperatures down to 220 K, resulting in an extended crystal lifetime and increased data redundancy. Finally, we show that useful anomalous signal can be obtained at room temperature using X-rays of 12 keV energy as typically used for routine data collection, allowing this type of experiment to be carried out at widely accessible synchrotron beamline energies and enabling the simultaneous extraction of high-resolution data and anomalous signal. With the recent emphasis on obtaining conformational ensemble information for proteins, the high resolution of the data allows such ensembles to be built, while the anomalous signal allows the structure to be experimentally solved, ions to be identified, and water molecules and ions to be differentiated. Because bound metal-, phosphorus- and sulfur-containing ions all have anomalous signal, obtaining anomalous signal across temperatures and up to physiological temperatures will provide a more complete description of protein conformational ensembles, function and energetics.

     
    more » « less
  2. BAlN films were grown by flow-rate modulation epitaxy on AlN. Figure 1 shows x-ray diffraction (XRD) peaks of 3-µm AlN/(0001) sapphire template layer and 45-nm BAlN layer at 2θ angles of 36.146o and 36.481o, corresponding to c-lattice constants of 4.966 and 4.922Å, respectively. The BAlN XRD peak is very clear and distinct given the small thickness, indicating good wurtzite crystallinity. It is not possible to directly calculate the B content from XRD alone because of uncertainty of the lattice parameters and strain. However, based on the angular separation of the XRD peaks and c-lattice constant difference, the B content is estimated to be ~7% [ ], which is considerably higher than those of high-quality wurtzite BAlN layers reported before [ , , ]. To obtain the accurate B content, Rutherford backscattering spectrometry (RBS) measurements are being made. Figures 2(a)-(b) show a high-resolution cross-sectional transmission electron microscopy (TEM) image with a magnification of 150 kx taken at a-zone axis ([11-20] projection) and diffraction pattern after fast-Fourier transform (FFT). A sharp interface between the AlN and BAlN layers is observed. In addition, the BAlN film exhibits a highly ordered lattice throughout the entire 45nm thickness without the polycrystalline columnar structures found in previous reports [1, ]. The FFT image confirms a wurtzite structure oriented along c-axis. Figure 3 shows a 5×5 µm2 atomic force microscopy (AFM) image of BAlN layer surface. The root-mean-square (RMS) surface roughness is ~1.7nm. Surface macro-steps were found on the surface due to longer diffusion length of group-III atoms than the expected step terrace width. This indicates there is potential to lower the growth temperature to create smoother surfaces while maintaining crystallinity which has been observed for AlN [ ]. In summary, a high-quality wurtzite BAlN layer with relatively high B content ~7% was demonstrated by MOCVD. Refractive index will be measured to facilitate design of distributed Bragg reflector (DBR) for deep UV vertical-cavity surface-emitting laser (VCSEL). 
    more » « less
  3. Electron diffraction through a thin patterned silicon membrane can be used to create complex spatial modulations in electron distributions. By precisely varying parameters such as crystallographic orientation and wafer thickness, the intensity of reflections in the diffraction plane can be controlled and by placing an aperture to block all but one spot, we can form an image with different parts of the patterned membrane, as is done for bright-field imaging in microscopy. The patterned electron beams can then be used to control phase and amplitude of subsequent x-ray emission, enabling novel coherent x-ray methods. The electrons themselves can also be used for femtosecond time resolved diffraction and microscopy. As a first step toward patterned beams, we demonstrate experimentally and through simulation the ability to accurately predict and control diffraction spot intensities. We simulate MeV transmission electron diffraction patterns using the multislice method for various crystallographic orientations of a single crystal Si(001) membrane near beam normal. The resulting intensity maps of the Bragg reflections are compared to experimental results obtained at the Accelerator Structure Test Area Ultrafast Electron Diffraction (ASTA UED) facility at SLAC. Furthermore, the fraction of inelastic and elastic scattering of the initial charge is estimated along with the absorption of the membrane to determine the contrast that would be seen in a patterned version of the Si(001) membrane. 
    more » « less
  4. The scattering pattern of a crystal obeys the symmetry of the crystal structure through the corresponding Laue group. This is usually also true for the diffuse scattering, containing information about disorder, but here a case is reported where the diffuse scattering is of lower symmetry than the parent crystal structure. The mineral bixbyite has been studied by X-ray and neutron scattering techniques since 1928 with some of the most recent studies characterizing the low-temperature transition to a magnetically disordered spin-glass state. However, bixbyite also exhibits structural disorder, and here single-crystal X-ray and neutron scattering is used to characterize the different modes of disorder present. One-dimensional rods of diffuse scattering are observed in the cubic mineral bixbyite, which break the expected symmetry of the scattering pattern. It is shown that this scattering arises from epitaxial intergrowths of the related mineral, braunite. The presence of this disorder mode is found to be directly observable as well-defined residuals in the average structure refined against the Bragg diffraction. An additional three-dimensional diffuse scattering component is observed in neutron scattering data, which is shown to originate from the substitutional disorder on the Fe/Mn sites. This occupational disorder gives rise to local relaxations of the oxide sublattice, and the pattern of oxide displacements can be rationalized based on crystal-field theory. The combined use of neutron and X-ray single-crystal scattering techniques highlights their great complementarity. In particular, the large sample requirements for neutron scattering experiments prove to be an obstacle in solving the intergrowth disorder due to several growth orientations, whereas for X-ray scattering the one-dimensional nature of the intergrowth disorder renders solving this a more tractable task. On the other hand, the oxide relaxations cannot be resolved using X-rays due to the low Mn/Fe contrast. By combining the two approaches both types of disorder have been characterized. 
    more » « less
  5. null (Ed.)
    SUMMARY Horizontal slowness vector measurements using array techniques have been used to analyse many Earth phenomena from lower mantle heterogeneity to meteorological event location. While providing observations essential for studying much of the Earth, slowness vector analysis is limited by the necessary and subjective visual inspection of observations. Furthermore, it is challenging to determine the uncertainties caused by limitations of array processing such as array geometry, local structure, noise and their effect on slowness vector measurements. To address these issues, we present a method to automatically identify seismic arrivals and measure their slowness vector properties with uncertainty bounds. We do this by bootstrap sampling waveforms, therefore also creating random sub arrays, then use linear beamforming to measure the coherent power at a range of slowness vectors. For each bootstrap sample, we take the top N peaks from each power distribution as the slowness vectors of possible arrivals. The slowness vectors of all bootstrap samples are gathered and the clustering algorithm DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is used to identify arrivals as clusters of slowness vectors. The mean of slowness vectors in each cluster gives the slowness vector measurement for that arrival and the distribution of slowness vectors in each cluster gives the uncertainty estimate. We tuned the parameters of DBSCAN using a data set of 2489 SKS and SKKS observations at a range of frequency bands from 0.1 to 1 Hz. We then present examples at higher frequencies (0.5–2.0 Hz) than the tuning data set, identifying PKP precursors, and lower frequency by identifying multipathing in surface waves (0.04–0.06 Hz). While we use a linear beamforming process, this method can be implemented with any beamforming process such as cross correlation beamforming or phase weighted stacking. This method allows for much larger data sets to be analysed without visual inspection of data. Phenomena such as multipathing, reflections or scattering can be identified automatically in body or surface waves and their properties analysed with uncertainties. 
    more » « less