To date X-ray protein crystallography is the most successful technique available for the determination of high-resolution 3D structures of biological molecules and their complexes. In X-ray protein crystallography the structure of a protein is refined against the set of observed Bragg reflections from a protein crystal. The resolution of the refined protein structure is limited by the highest angle at which Bragg reflections can be observed. In addition, the Bragg reflections alone are typically insufficient (by a factor of two) to determine the structureab initio, and so prior information is required. Crystals formed from an imperfect packing of the protein molecules may also exhibit continuous diffraction between and beyond these Bragg reflections. When this is due to random displacements of the molecules from each crystal lattice site, the continuous diffraction provides the necessary information to determine the protein structure without prior knowledge, to a resolution that is not limited by the angular extent of the observed Bragg reflections but instead by that of the diffraction as a whole. This article presents an iterative projection algorithm that simultaneously uses the continuous diffraction as well as the Bragg reflections for the determination of protein structures. The viability of this method is demonstrated on simulated crystal diffraction.
more »
« less
K-space algorithmic reconstruction (KAREN): a robust statistical methodology to separate Bragg and diffuse scattering
Diffuse scattering occurring in the Bragg diffraction pattern of a long-range-ordered structure represents local deviation from the governing regular lattice. However, interpreting the real-space structure from the diffraction pattern presents a significant challenge because of the dramatic difference in intensity between the Bragg and diffuse components of the total scattering function. In contrast to the sharp Bragg diffraction, the diffuse signal has generally been considered to be a weak expansive or continuous background signal. Herein, using 1D and 2D models, it is demonstrated that diffuse scattering in fact consists of a complex array of high-frequency features that must not be averaged into a low-frequency background signal. To evaluate the actual diffuse scattering effectively, an algorithm has been developed that uses robust statistics and traditional signal processing techniques to identify Bragg peaks as signal outliers which can be removed from the overall scattering data and then replaced by statistically valid fill values. This method, described as a `K-space algorithmic reconstruction' (KAREN), can identify Bragg reflections independent of prior knowledge of a system's unit cell. KAREN does not alter any data other than that in the immediate vicinity of the Bragg reflections, and reconstructs the diffuse component surrounding the Bragg peaks without introducing discontinuities which induce Fourier ripples or artifacts from underfilling `punched' voids. The KAREN algorithm for reconstructing diffuse scattering provides demonstrably better resolution than can be obtained from previously described punch-and-fill methods. The superior structural resolution obtained using the KAREN method is demonstrated by evaluating the complex ordered diffuse scattering observed from the neutron diffraction of a single plastic crystal of CBr 4 using pair distribution function analysis.
more »
« less
- Award ID(s):
- 1709370
- PAR ID:
- 10162234
- Date Published:
- Journal Name:
- Journal of Applied Crystallography
- Volume:
- 53
- Issue:
- 1
- ISSN:
- 1600-5767
- Page Range / eLocation ID:
- 159 to 169
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Diffraction patterns from small protein crystals illuminated by highly coherent X-rays often contain measurable interference signals between Bragg peaks. This coherent `shape transform' signal introduces enough additional information to allow the molecular densities to be determined from the diffracted intensities directly, without prior information or resolution restrictions. However, the various correlations amongst molecular occupancies/vacancies at the crystal surface result in a subtle yet critical problem in shape transform phasing whereby the sublattices of symmetry-related molecules exhibit a form of partial coherence amongst lattice sites when an average is taken over many crystal patterns. Here an iterative phase retrieval algorithm is developed which is capable of treating this problem; it is demonstrated on simulated data.more » « less
-
X-ray crystallography has been invaluable in delivering structural information about proteins. Previously, an approach has been developed that allows high-quality X-ray diffraction data to be obtained from protein crystals at and above room temperature. Here, this previous work is built on and extended by showing that high-quality anomalous signal can be obtained from single protein crystals using diffraction data collected at 220 K up to physiological temperatures. The anomalous signal can be used to directly determine the structure of a protein,i.e.to phase the data, as is routinely performed under cryoconditions. This ability is demonstrated by obtaining diffraction data from model lysozyme, thaumatin and proteinase K crystals, the anomalous signal from which allowed their structures to be solved experimentally at 7.1 keV X-ray energy and at room temperature with relatively low data redundancy. It is also demonstrated that the anomalous signal from diffraction data obtained at 310 K (37°C) can be used to solve the structure of proteinase K and to identify ordered ions. The method provides useful anomalous signal at temperatures down to 220 K, resulting in an extended crystal lifetime and increased data redundancy. Finally, we show that useful anomalous signal can be obtained at room temperature using X-rays of 12 keV energy as typically used for routine data collection, allowing this type of experiment to be carried out at widely accessible synchrotron beamline energies and enabling the simultaneous extraction of high-resolution data and anomalous signal. With the recent emphasis on obtaining conformational ensemble information for proteins, the high resolution of the data allows such ensembles to be built, while the anomalous signal allows the structure to be experimentally solved, ions to be identified, and water molecules and ions to be differentiated. Because bound metal-, phosphorus- and sulfur-containing ions all have anomalous signal, obtaining anomalous signal across temperatures and up to physiological temperatures will provide a more complete description of protein conformational ensembles, function and energetics.more » « less
-
The scattering pattern of a crystal obeys the symmetry of the crystal structure through the corresponding Laue group. This is usually also true for the diffuse scattering, containing information about disorder, but here a case is reported where the diffuse scattering is of lower symmetry than the parent crystal structure. The mineral bixbyite has been studied by X-ray and neutron scattering techniques since 1928 with some of the most recent studies characterizing the low-temperature transition to a magnetically disordered spin-glass state. However, bixbyite also exhibits structural disorder, and here single-crystal X-ray and neutron scattering is used to characterize the different modes of disorder present. One-dimensional rods of diffuse scattering are observed in the cubic mineral bixbyite, which break the expected symmetry of the scattering pattern. It is shown that this scattering arises from epitaxial intergrowths of the related mineral, braunite. The presence of this disorder mode is found to be directly observable as well-defined residuals in the average structure refined against the Bragg diffraction. An additional three-dimensional diffuse scattering component is observed in neutron scattering data, which is shown to originate from the substitutional disorder on the Fe/Mn sites. This occupational disorder gives rise to local relaxations of the oxide sublattice, and the pattern of oxide displacements can be rationalized based on crystal-field theory. The combined use of neutron and X-ray single-crystal scattering techniques highlights their great complementarity. In particular, the large sample requirements for neutron scattering experiments prove to be an obstacle in solving the intergrowth disorder due to several growth orientations, whereas for X-ray scattering the one-dimensional nature of the intergrowth disorder renders solving this a more tractable task. On the other hand, the oxide relaxations cannot be resolved using X-rays due to the low Mn/Fe contrast. By combining the two approaches both types of disorder have been characterized.more » « less
-
Sato, TJ (Ed.)Small-angle X-ray and neutron scattering (SAXS and SANS) patterns from certain semicrystalline polymers and liquid crystals contain discrete reflections from ordered assemblies and central diffuse scattering (CDS) from uncorrelated structures. Systems with imperfectly ordered lamellar structures aligned by stretching or by a magnetic field produce four distinct SAXS patterns: two-point `banana', four-point pattern, four-point `eyebrow' and four-point `butterfly'. The peak intensities of the reflections lie not on a layer line, or the arc of a circle, but on an elliptical trajectory. Modeling shows that randomly placed lamellar stacks modified by chain slip and stack rotation or interlamellar shear can create these forms. On deformation, the isotropic CDS becomes an equatorial streak with an oval, diamond or two-bladed propeller shape, which can be analyzed by separation into isotropic and oriented components. The streak has elliptical intensity contours, a natural consequence of the imperfect alignment of the elongated scattering objects. Both equatorial streaks and two- and four-point reflections can be fitted in elliptical coordinates with relatively few parameters. Equatorial streaks can be analyzed to obtain the size and orientation of voids, fibrils or surfaces. Analyses of the lamellar reflection yield lamellar spacing, stack orientation (interlamellar shear) angle α and chain slip angle ϕ, as well as the size distribution of the lamellar stacks. Currently available computational tools allow these microstructural parameters to be rapidly refined.more » « less
An official website of the United States government

