skip to main content


Title: Predicting re-emergence times of dengue epidemics at low reproductive numbers: DENV1 in Rio de Janeiro, 1986-1990
Predicting arbovirus re-emergence remains challenging in regions with limited off-season transmission and intermittent epidemics. Current mathematical models treat the depletion and replenishment of susceptible (non-immune) hosts as the principal drivers of re-emergence, based on established understanding of highly transmissible childhood diseases with frequent epidemics. We extend an analytical approach to determine the number of ‘skip’ years preceding re-emergence for diseases with continuous seasonal transmission, population growth and under-reporting. Re-emergence times are shown to be highly sensitive to small changes in low R0 (secondary cases produced from a primary infection in a fully susceptible population). We then fit a stochastic SIR (Susceptible-Infected-Recovered) model to observed case data for the emergence of dengue serotype DENV1 in Rio de Janeiro. This aggregated city-level model substantially over-estimates observed re-emergence times either in terms of skips or outbreak probability under forward simulation. The inability of susceptible depletion and replenishment to explain re-emergence under ‘well-mixed’ conditions at a city-wide scale demonstrates a key limitation of SIR aggregated models including those applied to other arboviruses. The predictive uncertainty and high skip sensitivity to epidemiological parameters suggest a need to investigate the relevant spatial scales of susceptible depletion and the scaling of microscale transmission dynamics to formulate simpler models that apply at coarse resolutions. Introduction:  more » « less
Award ID(s):
1761612
PAR ID:
10162243
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of the Royal Society interface
ISSN:
1742-5662
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Predicting arbovirus re-emergence remains challenging in regions with limited off-season transmission and intermittent epidemics. Current mathematical models treat the depletion and replenishment of susceptible (non-immune) hosts as the principal drivers of re-emergence, based on established understanding of highly transmissible childhood diseases with frequent epidemics. We extend an analytical approach to determine the number of ‘skip’ years preceding re-emergence for diseases with continuous seasonal transmission, population growth and under-reporting. Re-emergence times are shown to be highly sensitive to small changes in low R 0 (secondary cases produced from a primary infection in a fully susceptible population). We then fit a stochastic Susceptible–Infected–Recovered (SIR) model to observed case data for the emergence of dengue serotype DENV1 in Rio de Janeiro. This aggregated city-level model substantially over-estimates observed re-emergence times either in terms of skips or outbreak probability under forward simulation. The inability of susceptible depletion and replenishment to explain re-emergence under ‘well-mixed’ conditions at a city-wide scale demonstrates a key limitation of SIR aggregated models, including those applied to other arboviruses. The predictive uncertainty and high skip sensitivity to epidemiological parameters suggest a need to investigate the relevant spatial scales of susceptible depletion and the scaling of microscale transmission dynamics to formulate simpler models that apply at coarse resolutions. 
    more » « less
  2. null (Ed.)
    Mathematical models of the dynamics of infectious disease transmission are used to forecast epidemics and assess mitigation strategies. In this article, we highlight the analogy between the dynamics of disease transmission and chemical reaction kinetics while providing an exposition on the classic Susceptible–Infectious–Removed (SIR) epidemic model. Particularly, the SIR model resembles a dynamic model of a batch reactor carrying out an autocatalytic reaction with catalyst deactivation. This analogy between disease transmission and chemical reaction enables the exchange of ideas between epidemic and chemical kinetic modeling communities. 
    more » « less
  3. Ma, Shuangge ; Chen, Zhenxia (Ed.)
    Estimating transmission rates is a challenging yet essential aspect of comprehending and controlling the spread of infectious diseases. There are various methods available for this purpose, each with its own assumptions, data requirements, and limitations. This paper introduces a phylogenetic approach called transRate, designed to estimate inter-population transmission rates. The phylogenetic method, which maintains statistical consistency under the multi-population Susceptible-Infected-Recovered (SIR) model, integrates genetic information with traditional epidemiological approaches. This integration improves the accuracy of transmission rate estimates, facilitating more effective disease control and prevention strategies. Simulation analyses validate the precision of transRate in estimating transmission rates. With the growing abundance of public databases for genomic sequences, transRate is becoming more prevalent in tracking and preventing the spread of such diseases. 
    more » « less
  4. Epidemics like Covid-19 and Ebola have impacted people’s lives signifcantly. The impact of mobility of people across the countries or states in the spread of epidemics has been signifcant. The spread of disease due to factors local to the population under consideration is termed the endogenous spread. The spread due to external factors like migration, mobility, etc., is called the exogenous spread. In this paper, we introduce the Exo-SIR model, an extension of the popular SIR model and a few variants of the model. The novelty in our model is that it captures both the exogenous and endogenous spread of the virus. First, we present an analytical study. Second, we simulate the Exo-SIR model with and without assuming contact network for the population. Third, we implement the Exo-SIR model on real datasets regarding Covid-19 and Ebola. We found that endogenous infection is infuenced by exogenous infection. Furthermore, we found that the Exo-SIR model predicts the peak time better than the SIR model. Hence, the Exo-SIR model would be helpful for governments to plan policy interventions at the time of a pandemic. Keywords Covid-19, Ebola, Epidemic modeling, Compartment model, Exogenous infection, Endogenous infection, SIR, Exo-SIR 
    more » « less
  5. SIR (Susceptible, Infected or Recovered) stochastic network models are commonly used to describe the progression of epidemics inside a network. A task of interest in epidemiology is to use these models to estimate the state evolution, both at an individual as well as a population level. In this paper, we propose using continual testing to improve the state estimation at the individual level. Our testing is inspired from entropy reduction principles and requires only a small number of tests. 
    more » « less