Understanding how populations respond to increasingly variable conditions is a major objective for natural resource managers forecasting extinction risk. The lesson from current modelling is clear: increasing environmental variability increases population abundance variability. We show that this paradigm fails to describe a broad class of empirically observed dynamics, namely endogenously driven population cycles. In contrast to the dominant paradigm, these populations can exhibit reduced long-run population variance under increasing environmental variability. We provide evidence for a mechanistic explanation of this phenomenon that relies on how stochasticity interacts with long transient dynamics present in the deterministic cycling model. This interaction stands in contrast to the often assumed additivity of stochastic and deterministic drivers of population fluctuations. We show evidence for the phenomenon in two cyclical populations: flour beetles and Canadian lynx. We quantify the impact of the phenomenon with new theory that partitions the effects of nonlinear dynamics and stochastic variation on dynamical systems. In both empirical examples, the partitioning shows that the interaction between deterministic and stochastic dynamics reduces the variance in population size. Our results highlight that previous predictions about extinction under environmental variability may prove inadequate to understand the effects of climate change in some populations.
more »
« less
A martingale formulation for stochastic compartmental susceptible-infected-recovered (SIR) models to analyze finite size effects in COVID-19 case studies
Deterministic compartmental models for infectious diseases give the mean behaviour of stochastic agent-based models. These models work well for counterfactual studies in which a fully mixed large-scale population is relevant. However, with finite size populations, chance variations may lead to significant departures from the mean. In real-life applications, finite size effects arise from the variance of individual realizations of an epidemic course about its fluid limit. In this article, we consider the classical stochastic Susceptible-Infected-Recovered (SIR) model, and derive a martingale formulation consisting of a deterministic and a stochastic component. The deterministic part coincides with the classical deterministic SIR model and we provide an upper bound for the stochastic part. Through analysis of the stochastic component depending on varying population size, we provide a theoretical explanation of finite size effects. Our theory is supported by quantitative and direct numerical simulations of theoretical infinitesimal variance. Case studies of coronavirus disease 2019 (COVID-19) transmission in smaller populations illustrate that the theory provides an envelope of possible outcomes that includes the field data.
more »
« less
- PAR ID:
- 10321186
- Date Published:
- Journal Name:
- Networks & Heterogeneous Media
- Volume:
- 0
- Issue:
- 0
- ISSN:
- 1556-1801
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Residential burglary is a social problem in every major urban area. As such, progress has been to develop quantitative, informative and applicable models for this type of crime: (1) the Deterministic-time-step (DTS) model [Short, D’Orsogna, Pasour, Tita, Brantingham, Bertozzi & Chayes (2008) Math. Models Methods Appl. Sci. 18 , 1249–1267], a pioneering agent-based statistical model of residential burglary criminal behaviour, with deterministic time steps assumed for arrivals of events in which the residential burglary aggregate pattern formation is quantitatively studied for the first time; (2) the SSRB model (agent-based stochastic-statistical model of residential burglary crime) [Wang, Zhang, Bertozzi & Short (2019) Active Particles , Vol. 2 , Springer Nature Switzerland AG, in press], in which the stochastic component of the model is theoretically analysed by introduction of a Poisson clock with time steps turned into exponentially distributed random variables. To incorporate independence of agents, in this work, five types of Poisson clocks are taken into consideration. Poisson clocks (I), (II) and (III) govern independent agent actions of burglary behaviour, and Poisson clocks (IV) and (V) govern interactions of agents with the environment. All the Poisson clocks are independent. The time increments are independently exponentially distributed, which are more suitable to model individual actions of agents. Applying the method of merging and splitting of Poisson processes, the independent Poisson clocks can be treated as one, making the analysis and simulation similar to the SSRB model. A Martingale formula is derived, which consists of a deterministic and a stochastic component. A scaling property of the Martingale formulation with varying burglar population is found, which provides a theory to the finite size effects . The theory is supported by quantitative numerical simulations using the pattern-formation quantifying statistics. Results presented here will be transformative for both elements of application and analysis of agent-based models for residential burglary or in other domains.more » « less
-
While a common trend in disease modeling is to develop models of increasing complexity, it was recently pointed out that outbreaks appear remarkably simple when viewed in the incidence vs. cumulative cases (ICC) plane. This article details the theory behind this phenomenon by analyzing the stochastic Susceptible, Infected, Recovered (SIR) model in the cumulative cases domain. We prove that the Markov chain associated with this model reduces, in the ICC plane, to a pure birth chain for the cumulative number of cases, whose limit leads to an independent increments Gaussian process that fluctuates about a deterministic ICC curve. We calculate the associated variance and quantify the additional variability due to estimating incidence over a finite period of time. We also illustrate the universality brought forth by the ICC concept on real-world data for Influenza A and for the COVID-19 outbreak in Arizona.more » « less
-
Abstract We consider particle-based stochastic reaction-drift-diffusion models where particles move via diffusion and drift induced by one- and two-body potential interactions. The dynamics of the particles are formulated as measure-valued stochastic processes (MVSPs), which describe the evolution of the singular, stochastic concentration fields of each chemical species. The mean field large population limit of such models is derived and proven, giving coarse-grained deterministic partial integro-differential equations (PIDEs) for the limiting deterministic concentration fields’ dynamics. We generalize previous studies on the mean field limit of models involving only diffusive motion, with care to formulating the MVSP representation to ensure detailed balance of reversible reactions in the presence of potentials. Our work illustrates the more general set of PIDEs that arise in the mean field limit, demonstrating that the limiting macroscopic reactive interaction terms for reversible reactions obtain additional nonlinear concentration-dependent coefficients compared to the purely diffusive case. Numerical studies are presented which illustrate that two-body repulsive potential interactions can have a significant impact on the reaction dynamics, and also demonstrate the empirical numerical convergence of solutions to the PBSRDD model to the derived mean field PIDEs as the population size increases.more » « less
-
Hematopoiesis has been studied via stem cell labeling using barcodes, viral integration sites (VISs), or in situ methods. Subsequent proliferation and differentiation preserve the tag identity, thus defining a clone of mature cells across multiple cell type or lineages. By tracking the population of clones, measured within samples taken at discrete time points, we infer physiological parameters associated with a hybrid stochastic-deterministic mathematical model of hematopoiesis. We analyze clone population data from Koelle et al. ( Koelle et al., 2017 ) and compare the states of clones (mean and variance of their abundances) and the state-space density of clones with the corresponding quantities predicted from our model. Comparing our model to the tagged granulocyte populations, we find parameters (stem cell carrying capacity, stem cell differentiation rates, and the proliferative potential of progenitor cells, and sample sizes) that provide reasonable fits in three out of four animals. Even though some observed features cannot be quantitatively reproduced by our model, our analyses provides insight into how model parameters influence the underlying mechanisms in hematopoiesis. We discuss additional mechanisms not incorporated in our model.more » « less
An official website of the United States government

