skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards the Development of Nonlinear Approaches to Discriminate AF from NSR Using a Single-Lead ECG
Paroxysmal atrial fibrillation (Paro. AF) is challenging to identify at the right moment. This disease is often undiagnosed using currently existing methods. Nonlinear analysis is gaining importance due to its capability to provide more insight into complex heart dynamics. The aim of this study is to use several recently developed nonlinear techniques to discriminate persistent AF (Pers. AF) from normal sinus rhythm (NSR), and more importantly, Paro. AF from NSR, using short-term single-lead electrocardiogram (ECG) signals. Specifically, we adapted and modified the time-delayed embedding method to minimize incorrect embedding parameter selection and further support to reconstruct proper phase plots of NSR and AF heart dynamics, from MIT-BIH databases. We also examine information-based methods, such as multiscale entropy (MSE) and kurtosis (Kt) for the same purposes. Our results demonstrate that embedding parameter time delay ( τ ), as well as MSE and Kt values can be successfully used to discriminate between Pers. AF and NSR. Moreover, we demonstrate that τ and Kt can successfully discriminate Paro. AF from NSR. Our results suggest that nonlinear time-delayed embedding method and information-based methods provide robust discriminating features to distinguish both Pers. AF and Paro. AF from NSR, thus offering effective treatment before suffering chaotic Pers. AF.  more » « less
Award ID(s):
1662250
PAR ID:
10162313
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Entropy
Volume:
22
Issue:
5
ISSN:
1099-4300
Page Range / eLocation ID:
531
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundCatheter ablation is associated with limited success rates in patients with persistent atrial fibrillation (AF). Currently, existing mapping systems fail to identify critical target sites for ablation. Recently, we proposed and validated several techniques (multiscale frequency [MSF], Shannon entropy [SE], kurtosis [Kt], and multiscale entropy [MSE]) to identify pivot point of rotors using ex‐vivo optical mapping animal experiments. However, the performance of these techniques is unclear for the clinically recorded intracardiac electrograms (EGMs), due to the different nature of the signals. ObjectiveThis study aims to evaluate the performance of MSF, MSE, SE, and Kt techniques to identify the pivot point of the rotor using unipolar and bipolar EGMs obtained from numerical simulations. MethodsStationary and meandering rotors were simulated in a 2D human atria. The performances of new approaches were quantified by comparing the “true” core of the rotor with the core identified by the techniques. Also, the performances of all techniques were evaluated in the presence of noise, scar, and for the case of the multielectrode multispline and grid catheters. ResultsOur results demonstrate that all the approaches are able to accurately identify the pivot point of both stationary and meandering rotors from both unipolar and bipolar EGMs. The presence of noise and scar tissue did not significantly affect the performance of the techniques. Finally, the core of the rotors was correctly identified for the case of multielectrode multispline and grid catheter simulations. ConclusionThe core of rotors can be successfully identified from EGMs using novel techniques; thus, providing motivation for future clinical implementations. 
    more » « less
  2. Abstract A new algorithm is presented to discriminate reconstructed hadronic decays of tau leptons ( τ h ) that originate from genuine tau leptons in the CMS detector against τ h candidates that originate from quark or gluon jets, electrons, or muons. The algorithm inputs information from all reconstructed particles in the vicinity of a τ h candidate and employs a deep neural network with convolutional layers to efficiently process the inputs. This algorithm leads to a significantly improved performance compared with the previously used one. For example, the efficiency for a genuine τ h to pass the discriminator against jets increases by 10–30% for a given efficiency for quark and gluon jets. Furthermore, a more efficient τ h reconstruction is introduced that incorporates additional hadronic decay modes. The superior performance of the new algorithm to discriminate against jets, electrons, and muons and the improved τ h reconstruction method are validated with LHC proton-proton collision data at √ s = 13 TeV. 
    more » « less
  3. Abstract BackgroundAtrial fibrillation (AF) is often asymptomatic and thus under-observed. Given the high risks of stroke and heart failure among patients with AF, early prediction and effective management are crucial. Importantly, obstructive sleep apnea is highly prevalent among AF patients (60–90%); therefore, electrocardiogram (ECG) analysis from polysomnography (PSG), a standard diagnostic tool for subjects with suspected sleep apnea, presents a unique opportunity for the early prediction of AF. Our goal is to identify individuals at a high risk of developing AF in the future from a single-lead ECG recorded during standard PSGs. MethodsWe analyzed 18,782 single-lead ECG recordings from 13,609 subjects at Massachusetts General Hospital, identifying AF presence using ICD-9/10 codes in medical records. Our dataset comprises 15,913 recordings without a medical record for AF and 2,056 recordings from patients who were first diagnosed with AF between 1 day to 15 years after the PSG recording. The PSG data were partitioned into training, validation, and test cohorts. In the first phase, a signal quality index (SQI) was calculated in 30-second windows and those with SQI<0.95 were removed. From each remaining window, 150 hand-crafted features were extracted from time, frequency, time-frequency domains, and phase-space reconstructions of the ECG. A compilation of 12 statistical features summarized these window-specific features per recording, resulting in 1,800 features. We then updated a pre-trained deep neural network and data from the PhysioNet Challenge 2021 using transfer-learning to discriminate between recordings with and without AF using the same Challenge data. The model was applied to the PSG ECGs in 16-second windows to generate the probability of AF for each window. From the resultant probability sequence, 13 statistical features were extracted. Subsequently, we trained a shallow neural network to predict future AF using the extracted ECG and probability features. ResultsOn the test set, our model demonstrated a sensitivity of 0.67, specificity of 0.81, and precision of 0.3 for predicting AF. Further, survival analysis for AF outcomes, using the log-rank test, revealed a hazard ratio of 8.36 (p-value of 1.93 × 10−52). ConclusionsOur proposed ECG analysis method, utilizing overnight PSG data, shows promise in AF prediction despite a modest precision indicating the presence of false positive cases. This approach could potentially enable low-cost screening and proactive treatment for high-risk patients. Ongoing refinement, such as integrating additional physiological parameters could significantly reduce false positives, enhancing its clinical utility and accuracy. 
    more » « less
  4. Abstract We use a novel backstepping method to solve a stabilization problem for a nonlinear system with delayed sampled outputs that are not accurately measured. We provide an application to a system arising in vision‐based landing of airliners that includes coupling between the lateral and longitudinal dynamics, for which we provide performance guarantees in the presence of the delay, nonlinearity, and sampling. Our major contributions are (a) designs of lateral and longitudinal controls for our nonlinear model of an aircraft landing on an unequipped runway, (b) mathematical proofs that our controls ensure that the aircraft being modeled achieves desired alignment with the runway during its align phase, under sampling and delays that arise from image processing of visual information, and (c) comparative simulations exhibiting considerable improvement in control performance compared with previous methods that did not take the coupling of the dynamics or imprecise delayed sampled measurements into account. 
    more » « less
  5. The third-order response lies at the heart of simulating and interpreting nonlinear spectroscopies ranging from two-dimensional infrared (2D-IR) to 2D electronic (2D-ES), and 2D sum frequency generation (2D-SFG). The extra time and frequency dimensions in these spectroscopic techniques provide access to rich information on the electronic and vibrational states present, the coupling between them, and the resulting rates at which they exchange energy that are obscured in linear spectroscopy, particularly for condensed phase systems that usually contain many overlapping features. While the exact quantum expression for the third-order response is well established, it is incompatible with the methods that are practical for calculating the atomistic dynamics of large condensed phase systems. These methods, which include both classical mechanics and quantum dynamics methods that retain quantum statistical properties while obeying the symmetries of classical dynamics, such as LSC-IVR, centroid molecular dynamics, and Ring Polymer Molecular Dynamics (RPMD), naturally provide short-time approximations to the multi-time symmetrized Kubo transformed correlation function. Here, we show how the third-order response can be formulated in terms of equilibrium symmetrized Kubo transformed correlation functions. We demonstrate the utility and accuracy of our approach by showing how it can be used to obtain the third-order response of a series of model systems using both classical dynamics and RPMD. In particular, we show that this approach captures features such as anharmonically induced vertical splittings and peak shifts while providing a physically transparent framework for understanding multidimensional spectroscopies. 
    more » « less