skip to main content


Title: Towards the Development of Nonlinear Approaches to Discriminate AF from NSR Using a Single-Lead ECG
Paroxysmal atrial fibrillation (Paro. AF) is challenging to identify at the right moment. This disease is often undiagnosed using currently existing methods. Nonlinear analysis is gaining importance due to its capability to provide more insight into complex heart dynamics. The aim of this study is to use several recently developed nonlinear techniques to discriminate persistent AF (Pers. AF) from normal sinus rhythm (NSR), and more importantly, Paro. AF from NSR, using short-term single-lead electrocardiogram (ECG) signals. Specifically, we adapted and modified the time-delayed embedding method to minimize incorrect embedding parameter selection and further support to reconstruct proper phase plots of NSR and AF heart dynamics, from MIT-BIH databases. We also examine information-based methods, such as multiscale entropy (MSE) and kurtosis (Kt) for the same purposes. Our results demonstrate that embedding parameter time delay ( τ ), as well as MSE and Kt values can be successfully used to discriminate between Pers. AF and NSR. Moreover, we demonstrate that τ and Kt can successfully discriminate Paro. AF from NSR. Our results suggest that nonlinear time-delayed embedding method and information-based methods provide robust discriminating features to distinguish both Pers. AF and Paro. AF from NSR, thus offering effective treatment before suffering chaotic Pers. AF.  more » « less
Award ID(s):
1662250
NSF-PAR ID:
10162313
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Entropy
Volume:
22
Issue:
5
ISSN:
1099-4300
Page Range / eLocation ID:
531
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Catheter ablation is associated with limited success rates in patients with persistent atrial fibrillation (AF). Currently, existing mapping systems fail to identify critical target sites for ablation. Recently, we proposed and validated several techniques (multiscale frequency [MSF], Shannon entropy [SE], kurtosis [Kt], and multiscale entropy [MSE]) to identify pivot point of rotors using ex‐vivo optical mapping animal experiments. However, the performance of these techniques is unclear for the clinically recorded intracardiac electrograms (EGMs), due to the different nature of the signals.

    Objective

    This study aims to evaluate the performance of MSF, MSE, SE, and Kt techniques to identify the pivot point of the rotor using unipolar and bipolar EGMs obtained from numerical simulations.

    Methods

    Stationary and meandering rotors were simulated in a 2D human atria. The performances of new approaches were quantified by comparing the “true” core of the rotor with the core identified by the techniques. Also, the performances of all techniques were evaluated in the presence of noise, scar, and for the case of the multielectrode multispline and grid catheters.

    Results

    Our results demonstrate that all the approaches are able to accurately identify the pivot point of both stationary and meandering rotors from both unipolar and bipolar EGMs. The presence of noise and scar tissue did not significantly affect the performance of the techniques. Finally, the core of the rotors was correctly identified for the case of multielectrode multispline and grid catheter simulations.

    Conclusion

    The core of rotors can be successfully identified from EGMs using novel techniques; thus, providing motivation for future clinical implementations.

     
    more » « less
  2. Single-molecule Förster resonance energy transfer (smFRET) is an experimental methodology to track the real-time dynamics of molecules using fluorescent probes to follow one or more intramolecular distances. These distances provide a low-dimensional representation of the full atomistic dynamics. Under mild technical conditions, Takens’ Delay Embedding Theorem guarantees that the full three-dimensional atomistic dynamics of a system are diffeomorphic (i.e., related by a smooth and invertible transformation) to a time-delayed embedding of one or more scalar observables. Appealing to these theoretical guarantees, we employ manifold learning, artificial neural networks, and statistical mechanics to learn from molecular simulation training data the a priori unknown transformation between the atomic coordinates and delay-embedded intramolecular distances accessible to smFRET. This learned transformation may then be used to reconstruct atomistic coordinates from smFRET time series data. We term this approach Single-molecule TAkens Reconstruction (STAR). We have previously applied STAR to reconstruct molecular configurations of a C24H50 polymer chain and the mini-protein Chignolin with accuracies better than 0.2 nm from simulated smFRET data under noise free and high time resolution conditions. In the present work, we investigate the role of signal-to-noise ratio, data volume, and time resolution in simulated smFRET data to assess the performance of STAR under conditions more representative of experimental realities. We show that STAR can reconstruct the Chignolin and Villin mini-proteins to accuracies of 0.12 and 0.42 nm, respectively, and place bounds on these conditions for accurate reconstructions. These results demonstrate that it is possible to reconstruct dynamical trajectories of protein folding from time series in noisy, time binned, experimentally measurable observables and lay the foundations for the application of STAR to real experimental data. 
    more » « less
  3. The third-order response lies at the heart of simulating and interpreting nonlinear spectroscopies ranging from two-dimensional infrared (2D-IR) to 2D electronic (2D-ES), and 2D sum frequency generation (2D-SFG). The extra time and frequency dimensions in these spectroscopic techniques provide access to rich information on the electronic and vibrational states present, the coupling between them, and the resulting rates at which they exchange energy that are obscured in linear spectroscopy, particularly for condensed phase systems that usually contain many overlapping features. While the exact quantum expression for the third-order response is well established, it is incompatible with the methods that are practical for calculating the atomistic dynamics of large condensed phase systems. These methods, which include both classical mechanics and quantum dynamics methods that retain quantum statistical properties while obeying the symmetries of classical dynamics, such as LSC-IVR, centroid molecular dynamics, and Ring Polymer Molecular Dynamics (RPMD), naturally provide short-time approximations to the multi-time symmetrized Kubo transformed correlation function. Here, we show how the third-order response can be formulated in terms of equilibrium symmetrized Kubo transformed correlation functions. We demonstrate the utility and accuracy of our approach by showing how it can be used to obtain the third-order response of a series of model systems using both classical dynamics and RPMD. In particular, we show that this approach captures features such as anharmonically induced vertical splittings and peak shifts while providing a physically transparent framework for understanding multidimensional spectroscopies. 
    more » « less
  4. Raynal, Ann M. ; Ranney, Kenneth I. (Ed.)
    Most research in technologies for the Deaf community have focused on translation using either video or wearable devices. Sensor-augmented gloves have been reported to yield higher gesture recognition rates than camera-based systems; however, they cannot capture information expressed through head and body movement. Gloves are also intrusive and inhibit users in their pursuit of normal daily life, while cameras can raise concerns over privacy and are ineffective in the dark. In contrast, RF sensors are non-contact, non-invasive and do not reveal private information even if hacked. Although RF sensors are unable to measure facial expressions or hand shapes, which would be required for complete translation, this paper aims to exploit near real-time ASL recognition using RF sensors for the design of smart Deaf spaces. In this way, we hope to enable the Deaf community to benefit from advances in technologies that could generate tangible improvements in their quality of life. More specifically, this paper investigates near real-time implementation of machine learning and deep learning architectures for the purpose of sequential ASL signing recognition. We utilize a 60 GHz RF sensor which transmits a frequency modulation continuous wave (FMWC waveform). RF sensors can acquire a unique source of information that is inaccessible to optical or wearable devices: namely, a visual representation of the kinematic patterns of motion via the micro-Doppler signature. Micro-Doppler refers to frequency modulations that appear about the central Doppler shift, which are caused by rotational or vibrational motions that deviate from principle translational motion. In prior work, we showed that fractal complexity computed from RF data could be used to discriminate signing from daily activities and that RF data could reveal linguistic properties, such as coarticulation. We have also shown that machine learning can be used to discriminate with 99% accuracy the signing of native Deaf ASL users from that of copysigning (or imitation signing) by hearing individuals. Therefore, imitation signing data is not effective for directly training deep models. But, adversarial learning can be used to transform imitation signing to resemble native signing, or, alternatively, physics-aware generative models can be used to synthesize ASL micro-Doppler signatures for training deep neural networks. With such approaches, we have achieved over 90% recognition accuracy of 20 ASL signs. In natural environments, however, near real-time implementations of classification algorithms are required, as well as an ability to process data streams in a continuous and sequential fashion. In this work, we focus on extensions of our prior work towards this aim, and compare the efficacy of various approaches for embedding deep neural networks (DNNs) on platforms such as a Raspberry Pi or Jetson board. We examine methods for optimizing the size and computational complexity of DNNs for embedded micro-Doppler analysis, methods for network compression, and their resulting sequential ASL recognition performance. 
    more » « less
  5. Abstract

    We use a novel backstepping method to solve a stabilization problem for a nonlinear system with delayed sampled outputs that are not accurately measured. We provide an application to a system arising in vision‐based landing of airliners that includes coupling between the lateral and longitudinal dynamics, for which we provide performance guarantees in the presence of the delay, nonlinearity, and sampling. Our major contributions are (a) designs of lateral and longitudinal controls for our nonlinear model of an aircraft landing on an unequipped runway, (b) mathematical proofs that our controls ensure that the aircraft being modeled achieves desired alignment with the runway during its align phase, under sampling and delays that arise from image processing of visual information, and (c) comparative simulations exhibiting considerable improvement in control performance compared with previous methods that did not take the coupling of the dynamics or imprecise delayed sampled measurements into account.

     
    more » « less