Modern aircraft heavily rely on several wireless technologies for communications, control, and navigation. Researchers demonstrated vulnerabilities in many aviation systems. However, the resilience of the aircraft landing systems to adversarial wireless attacks have not yet been studied in the open literature, despite their criticality and the increasing availability of low-cost software-defined radio (SDR) platforms. In this paper, we investigate the vulnerability of aircraft instrument landing systems (ILS) to wireless attacks. We show the feasibility of spoofing ILS radio signals using commercially-available SDR, causing last-minute go around decisions, and even missing the landing zone in low-visibility scenarios. We demonstrate on aviation-grade ILS receivers that it is possible to fully and in fine-grain control the course deviation indicator as displayed by the ILS receiver, in real-time. We analyze the potential of both an overshadowing attack and a lower-power single-tone attack. In order to evaluate the complete attack, we develop a tightly-controlled closed-loop ILS spoofer that adjusts the adversary's transmitted signals as a function of the aircraft GPS location, maintaining power and deviation consistent with the adversary's target position, causing an undetected off-runway landing. We systematically evaluate the performance of the attack against an FAA certified flight-simulator (X-Plane)'s AI-based autoland feature and demonstrate systematic success rate with offset touchdowns of 18 meters to over 50 meters.
more »
« less
Controls for a nonlinear system arising in vision‐based landing of airliners
Abstract We use a novel backstepping method to solve a stabilization problem for a nonlinear system with delayed sampled outputs that are not accurately measured. We provide an application to a system arising in vision‐based landing of airliners that includes coupling between the lateral and longitudinal dynamics, for which we provide performance guarantees in the presence of the delay, nonlinearity, and sampling. Our major contributions are (a) designs of lateral and longitudinal controls for our nonlinear model of an aircraft landing on an unequipped runway, (b) mathematical proofs that our controls ensure that the aircraft being modeled achieves desired alignment with the runway during its align phase, under sampling and delays that arise from image processing of visual information, and (c) comparative simulations exhibiting considerable improvement in control performance compared with previous methods that did not take the coupling of the dynamics or imprecise delayed sampled measurements into account.
more »
« less
- Award ID(s):
- 1711299
- PAR ID:
- 10453235
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- International Journal of Robust and Nonlinear Control
- Volume:
- 31
- Issue:
- 4
- ISSN:
- 1049-8923
- Page Range / eLocation ID:
- p. 1227-1244
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The paper discusses a machine learning vision and nonlinear control approach for autonomous ship landing of vertical flight aircraft without utilizing GPS signal. The central idea involves automating the Navy helicopter ship landing procedure where the pilot utilizes the ship as the visual reference for long-range tracking, but refers to a standardized visual cue installed on most Navy ships called the ”horizon bar” for the final approach and landing phases. This idea is implemented using a uniquely designed nonlinear controller integrated with machine vision. The vision system utilizes machine learning based object detection for long-range ship tracking, and classical computer vision for object detection and the estimation of aircraft relative position and orientation during the final approach and landing phases. The nonlinear controller operates based on the information estimated by the vision system and has demonstrated robust tracking performance even in the presence of uncertainties. The developed autonomous ship landing system is implemented on a quad-rotor vertical take-off and landing (VTOL) capable unmanned aerial vehicle (UAV) equipped with an onboard camera and was demonstrated on a moving deck, which imitates realistic ship deck motions using a Stewart platform and a visual cue equivalent to the horizon bar. Extensive simulations and flight tests are conducted to demonstrate vertical landing safety, tracking capability, and landing accuracy while the deck is in motion.more » « less
-
Summary This paper proposes some novel compensating strategies in output feedback controller design for a class of nonlinear uncertain system. With Euler approximation introduced for unmeasured state and coordinate transformation constructed for continuous system, sampled‐data stabilization under arbitrary sampling period is firstly realized for linear system using compensation between sampling period and scaling gain. Then global sampled‐data stabilization for a class of nonlinear system is studied using linear feedback domination of Lyapunov functions. Extension of obtained results to three‐dimensional system or systems under general assumptions are also presented. With the compensation schemes proposed in controller design, the sufficiently small sampling period or approximating step previously imposed is not required any more. The proposed controllers can be easily implemented using output measurements sampled at the current step and delayed output measurements sampled at the previous step without constructing state observers which has been illustrated by the numerical studies.more » « less
-
The paper discusses an intelligent vision-based control solution for autonomous tracking and landing of Vertical Take-Off and Landing (VTOL) capable Unmanned Aerial Vehicles (UAVs) on ships without utilizing GPS signal. The central idea involves automating the Navy helicopter ship landing procedure where the pilot utilizes the ship as the visual reference for long-range tracking; however, refers to a standardized visual cue installed on most Navy ships called the ”horizon bar” for the final approach and landing phases. This idea is implemented using a uniquely designed nonlinear controller integrated with machine vision. The vision system utilizes machine learning based object detection for long-range ship tracking and classical computer vision for the estimation of aircraft relative position and orientation utilizing the horizon bar during the final approach and landing phases. The nonlinear controller operates based on the information estimated by the vision system and has demonstrated robust tracking performance even in the presence of uncertainties. The developed autonomous ship landing system was implemented on a quad-rotor UAV equipped with an onboard camera, and approach and landing were successfully demonstrated on a moving deck, which imitates realistic ship deck motions. Extensive simulations and flight tests were conducted to demonstrate vertical landing safety, tracking capability, and landing accuracy. The video of the real-world experiments and demonstrations is available at this URL.more » « less
-
Abstract Global sampled‐data stabilization for a class of nonlinear continuous system with input delay has been investigated directly in the discrete‐time domain due to challenges confronted in dealing with infinite‐dimensional system under input delay. Memorized state feedback controllers and output feedback controllers based on dynamic extension of state space have been constructed within the framework of co‐design between sampling period and scaling gain. Upon this compensation scheme, global sampled‐data stabilization a class of nonlinear system has been successfully realized no matter the input delay is smaller than the sampling period or not. Compared with memory‐less sampled‐data controllers, not only sampled‐data stabilization under large input delay has been realized but also transient performance of closed‐loop system has been further improved. Simulation results under different input delays and sampling periods have illustrated the effectiveness of results obtained.more » « less
An official website of the United States government
