skip to main content

Title: Texture Development and Stress–Strain Partitioning in Periclase + Halite Aggregates
Multiphase materials are widely applied in engineering due to desirable mechanical properties and are of interest to geoscience as rocks are multiphase. High-pressure mechanical behavior is important for understanding the deep Earth where rocks deform at extreme pressure and temperature. In order to systematically study the underlying physics of multiphase deformation at high pressure, we perform diamond anvil cell deformation experiments on MgO + NaCl aggregates with varying phase proportions. Lattice strain and texture evolution are recorded using in-situ synchrotron x-ray diffraction and are modeled using two-phase elasto-viscoplastic self-consistent (EVPSC) simulations to deduce stress, strain, and deformation mechanisms in individual phases and the aggregate. Texture development of MgO and NaCl are affected by phase proportions. In NaCl, a (100) compression texture is observed when small amounts of MgO are present. In contrast, when deformed as a single phase or when large amounts of MgO are present, NaCl develops a (110) texture. Stress and strain evolution in MgO and NaCl also show different trends with varying phase proportions. Based on the results from this study, we construct a general scheme of stress evolution as a function of phase proportion for individual phases and the aggregate.
Authors:
; ; ; ; ;
Award ID(s):
1654687
Publication Date:
NSF-PAR ID:
10162352
Journal Name:
Minerals
Volume:
9
Issue:
11
Page Range or eLocation-ID:
679
ISSN:
0560-9178
Sponsoring Org:
National Science Foundation
More Like this
  1. Severe plastic deformation (SPD) is an effective route for the nanocrystallization of multi-principal element alloys (MPEAs). The stability of the refined microstructure is important, considering the high temperature applications of these materials. In the present study, the effect of SPD on the stability of a body-centered cubic (bcc) HfNbTiZr MPEA was investigated. SPD was performed using a high-pressure torsion (HPT) technique by varying the number of turns between ½ and 10. The evolution of phase composition and microstructure was studied near the disk centers and edges where the imposed strain values were the lowest and highest, respectively. Thus, the shear strain caused by HPT varies between 3 (½ turn, near the center) and 340 (10 turns, near the edge). It was found that during annealing up to 1000 K, the bcc HfNbTiZr alloy decomposed into two bcc phases with different lattice constants at 740 K. In addition, at high strains a hexagonal close packed (hcp) phase was formed above 890 K. An inhomogeneous elemental distribution was developed at temperatures higher than 890 K due to the phase decomposition. The scale of the chemical heterogeneities decreased from about 10 µm to 30 nm where the shear strain increased from 3 tomore »340, which is similar to the magnitude of grain refinement. Anneal-induced hardening was observed in the MPEA after HPT for both low and high strains at 740 K, i.e., the hardness of the HPT-processed samples increased due to heat treatment. At low strain, the hardness remained practically unchanged between 740 and 1000 K, while for the alloy receiving high strains there was a softening in this temperature range.« less
  2. null (Ed.)
    Garnet is an important mineral phase in the upper mantle as it is both a key component in bulk mantle rocks, and a primary phase at high-pressure within subducted basalt. Here, we focus on the strength of garnet and the texture that develops within garnet during accommodation of differential deformational strain. We use X-ray diffraction in a radial geometry to analyze texture development in situ in three garnet compositions under pressure at 300 K: a natural garnet (Prp60Alm37) to 30 GPa, and two synthetic majorite-bearing compositions (Prp59Maj41 and Prp42Maj58) to 44 GPa. All three garnets develop a modest (100) texture at elevated pressure under axial compression. Elasto-viscoplastic self-consistent (EVPSC) modeling suggests that two slip systems are active in the three garnet compositions at all pressures studied: {110}<1-21 11> and {001}<110>. We determine a flow strength of ~5 GPa at pressures between 10 to 15 GPa for all three garnets; these values are higher than previously measured yield strengths measured on natural and majoritic garnets. Strengths calculated using the experimental lattice strain differ from the strength generated from those calculated using EVPSC. Prp67Alm33, Prp59Maj41 and Prp42Maj58 are of comparable strength to each other at room temperature, which indicates that majorite substitutionmore »does not greatly affect the strength of garnets. Additionally, all three garnets are of similar strength as lower mantle phases such as bridgmanite and ferropericlase, suggesting that garnet may not be notably stronger than the surrounding lower mantle/deep upper mantle phases at the base of the upper mantle.« less
  3. Abstract The rheology of the upper mantle impacts a variety of geodynamic processes, including postseismic deformation following great earthquakes and post-glacial rebound. The deformation of upper mantle rocks is controlled by the rheology of olivine, the most abundant upper mantle mineral. The mechanical properties of olivine at steady state are well constrained. However, the physical mechanism underlying transient creep, an evolutionary, hardening phase converging to steady state asymptotically, is still poorly understood. Here, we constrain a constitutive framework that captures transient creep and steady state creep consistently using the mechanical data from laboratory experiments on natural dunites containing at least 94% olivine under both hydrous and anhydrous conditions. The constitutive framework represents a Burgers assembly with a thermally activated nonlinear stress-versus-strain-rate relationship for the dashpots. Work hardening is obtained by the evolution of a state variable that represents internal stress. We determine the flow law parameters for dunites using a Markov chain Monte Carlo method. We find the activation energy $$430\pm 20$$ 430 ± 20   and $$250\pm 10$$ 250 ± 10  kJ/mol for dry and wet conditions, respectively, and the stress exponent $$2.0\pm 0.1$$ 2.0 ± 0.1 for both the dry and wet cases for transient creep, consistently lowermore »than those of steady-state creep, suggesting a separate physical mechanism. For wet dunites in the grain-boundary sliding regime, the grain-size dependence is similar for transient creep and steady-state creep. The lower activation energy of transient creep could be due to a higher jog density of the corresponding soft-slip system. More experimental data are required to estimate the activation volume and water content exponent of transient creep. The constitutive relation used and its associated flow law parameters provide useful constraints for geodynamics applications. Graphical Abstract« less
  4. In recent years there have been several attempts to make the link between mineral properties and seismic anisotropy in the D’’ region but have yet to reach consensus with regards to the dynamics in lower mantle minerals that could give rise to the observed seismic anisotropy. Here, we aim to provide further constraints on the observed long wavelength shear velocity patterns seen in seismic tomography studies. We introduce a forward model of deformation in a subducting slab as it impacts the core mantle boundary (D’’ layer) and proceeds to upwelling at the edge of a simulated LLSVP. By implementing the most recent results from atomistic modeling and high-pressure deformation experiments coupled with a 3-dimensional geodynamic model, we compare the microstructural evolution of an aggregate with a pyrolytic composition to the macroscopically observed seismic anisotropy of the lowermost mantle. We account for topotaxial relations in the forward and reverse phase transitions of MgSiO3-perovskite (Pv) to post-perovskite (pPv) within the slab as well as explore the effects introduced by partial melting near the CMB. Comparisons in the two leading candidate deformation mechanisms in the post-perovskite phase, (001) and (010), are compared. In this study we find that the reverse transition (pPv tomore »Pv) occurs at a depth which is ~ 150 km deeper than that of the forward transition due to increasing temperature near the CMB providing a varying topography of the D’’ discontinuity. Our model also produces good fits with the isotropic velocities of PREM for the bulk lower mantle. When coupled with temperature and pressure dependent forward and reverse phase transitions, a pPv system with dominant (001) slip provides good correlation with the currently observed VSH fast horizontal (~ 1 – 6%) in D’’ and with VSV consistently fast in upwelling areas. Azimuthal variations along the streamline are also investigated showing a symmetry lower than that of the assumed VTI in D’’ introduced by ‘rolling’ effects near the slab’s edge. The addition of 1% partial melting at the CMB is shown to increase S and P wave anisotropy beneath the slab at the base of upwelling with up to ~2.5 & 4.0% P and S wave reductions respectively compared to the global reference.« less
  5. Abstract

    Below the seismogenic zone, faults are expressed as zones of distributed ductile strain in which minerals deform chiefly by crystal plastic and diffusional processes. We present a case study from the Caledonian frontal thrust system in northwest Scotland to better constrain the geometry, internal structure, and rheology of a major zone of reverse-sense shear below the brittle-to-ductile transition (BDT). Rocks now exposed at the surface preserve a range of shear zone conditions reflecting progressive exhumation of the shear zone during deformation. Field-based measurements of structural distance normal to the Moine Thrust Zone, which marks the approximate base of the shear zone, together with microstructural observations of active slip systems and the mechanisms of deformation and recrystallization in quartz, are paired with quantitative estimates of differential stress, deformation temperature, and pressure. These are used to reconstruct the internal structure and geometry of the Scandian shear zone from ~10 to 20 km depth. We document a shear zone that localizes upwards from a thickness of >2.5 km to <200 m with temperature ranging from ~450–350°C and differential stress from 15–225 MPa. We use estimates of deformation conditions in conjunction with independently calculated strain rates to compare between experimentally derived constitutive relationships and conditions observed inmore »naturally-deformed rocks. Lastly, pressure and converted shear stress are used to construct a crustal strength profile through this contractional orogen. We calculate a peak shear stress of ~130 MPa in the shallowest rocks which were deformed at the BDT, decreasing to <10 MPa at depths of ~20 km. Our results are broadly consistent with previous studies which find that the BDT is the strongest region of the crust.

    « less