Abstract Floral nectar is frequently colonised by microbes. However, nectar microbial communities are typically species‐poor and dominated by few cosmopolitan genera. One hypothesis is that nectar constituents may act as environmental filters. We tested how five non‐sugar nectar compounds as well as elevated sugar impacted the growth of 12 fungal and bacterial species isolated from nectar, pollinators, and the environment. We hypothesised that nectar isolated microbes would have the least growth suppression. Additionally, to test if nectar compounds could affect the outcome of competition between microbes, we grew a subset of microbes in co‐culture across a subset of treatments. We found that some compounds such as H2O2suppressed microbial growth across many but not all microbes tested. Other compounds were more specialised in the microbes they impacted. As hypothesised, the nectar specialist yeastMetschnikowia reukaufiiwas unaffected by most nectar compounds assayed. However, many non‐nectar specialist microbes remained unaffected by nectar compounds thought to reduce microbial growth. Our results show that nectar chemistry can influence microbial communities but that microbe‐specific responses to nectar compounds are common. Nectar chemistry also affected the outcome of species interactions among microbial taxa, suggesting that non‐sugar compounds can affect microbial community assembly in flowers.
more »
« less
Microbial Co-Occurrence in Floral Nectar Affects Metabolites and Attractiveness to a Generalist Pollinator
Microbial metabolism can shape cues important for animal attraction in service-resource mutualisms. Resources are frequently colonized by microbial communities, but experimental assessment of animal-microbial interactions often focus on microbial monocultures. Such an approach likely fails to predict effects of microbial assemblages, as microbe-microbe interactions may affect in a non-additive manner microbial metabolism and resulting chemosensory cues. Here, we compared effects of microbial mono- and cocultures on growth of constituent microbes, volatile metabolite production, sugar catabolism, and effects on pollinator foraging across two nectar environments that differed in sugar concentration. Growth in co-culture decreased the abundance of the yeast Metschnikowia reukaufii, but not the bacterium Asaia astilbes. Volatile emissions differed significantly between microbial treatments and with nectar concentration, while sugar concentration was relatively similar among mono- and cocultures. Coculture volatile emission closely resembled an additive combination of monoculture volatiles. Despite differences in microbial growth and chemosensory cues, honey bee feeding did not differ between microbial monocultures and assemblages. Taken together, our results suggest that in some cases, chemical and ecological effects of microbial assemblages are largely predictable from those of component species, but caution that more work is necessary to predict under what circumstances non-additive effects are important.
more »
« less
- Award ID(s):
- 1846266
- PAR ID:
- 10162412
- Date Published:
- Journal Name:
- Journal of Chemical Ecology
- ISSN:
- 0098-0331
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Floral nectar is prone to colonization by nectar-adapted yeasts and bacteria via air-, rain-, and animal-mediated dispersal. Upon colonization, microbes can modify nectar chemical constituents that are plant-provisioned or impart their own through secretion of metabolic by-products or antibiotics into the nectar environment. Such modifications can have consequences for pollinator perception of nectar quality, as microbial metabolism can leave a distinct imprint on olfactory and gustatory cues that inform foraging decisions. Furthermore, direct interactions between pollinators and nectar microbes, as well as consumption of modified nectar, have the potential to affect pollinator health both positively and negatively. Here, we discuss and integrate recent findings from research on plant–microbe–pollinator interactions and their consequences for pollinator health. We then explore future avenues of research that could shed light on the myriad ways in which nectar microbes can affect pollinator health, including the taxonomic diversity of vertebrate and invertebrate pollinators that rely on this reward. This article is part of the theme issue ‘Natural processes influencing pollinator health: from chemistry to landscapes’.more » « less
-
ABSTRACT Microbial dispersal is essential for establishment in new habitats, but the role of vector identity is poorly understood in community assembly and function. Here, we compared microbial assembly and function in floral nectar visited by legitimate pollinators (hummingbirds) and nectar robbers (carpenter bees). We assessed effects of visitation on the abundance and composition of culturable bacteria and fungi and their taxonomy and function using shotgun metagenomics and nectar chemistry. We also compared metagenome-assembled genomes (MAGs) of Acinetobacter, a common and highly abundant nectar bacterium, among visitor treatments. Visitation increased microbial abundance, but robbing resulted in 10× higher microbial abundance than pollination. Microbial communities differed among visitor treatments: robbed flowers were characterized by predominant nectar specialists within Acetobacteraceae and Metschnikowiaceae, with a concurrent loss of rare taxa, and these resulting communities harbored genes relating to osmotic stress, saccharide metabolism and specialized transporters. Gene differences were mirrored in function: robbed nectar contained a higher percentage of monosaccharides. Draft genomes of Acinetobacter revealed distinct amino acid and saccharide utilization pathways in strains isolated from robbed versus pollinated flowers. Our results suggest an unrecognized cost of nectar robbing for pollination and distinct effects of visitor type on interactions between plants and pollinators. Overall, these results suggest vector identity is an underappreciated factor structuring microbial community assembly and function.more » « less
-
Abstract Floral nectar, an important resource for pollinators, is inhabited by microbes such as yeasts and bacteria, which have been shown to influence pollinator preference. Dynamic and complex plant-pollinator-microbe interactions are likely to be affected by a rapidly changing climate, as each player has their own optimal growth temperatures and phenological responses to environmental triggers, such as temperature. To understand how warming due to climate change is influencing nectar microbial communities, we incubated a natural nectar microbial community at different temperatures and assessed the subsequent nectar chemistry and preference of the common eastern bumble bee, Bombus impatiens . The microbial community in floral nectar is often species-poor, and the cultured Brassica rapa nectar community was dominated by the bacterium Fructobacillus . Temperature increased the abundance of bacteria in the warmer treatment. Bumble bees preferred nectar inoculated with microbes, but only at the lower, ambient temperature. Warming therefore induced an increase in bacterial abundance which altered nectar sugars and led to significant differences in pollinator preference.more » « less
-
Abstract Plant‐systemic neonicotinoid (NN) insecticides can exert non‐target impacts on organisms like beneficial insects and soil microbes. NNs can affect plant microbiomes, but we know little about their effects on microbial communities that mediate plant‐insect interactions, including nectar‐inhabiting microbes (NIMs). Here we employed two approaches to assess the impacts of NN exposure on several NIM taxa. First, we assayed the in vitro effects of six NN compounds on NIM growth using plate assays. Second, we inoculated a standardised NIM community into the nectar of NN‐treated canola (Brassica napus) and assessed microbial survival and growth after 24 h. With few exceptions, in vitro NN exposure tended to decrease bacterial growth metrics. However, the magnitude of the decrease and the NN concentrations at which effects were observed varied substantially across bacteria. Yeasts showed no consistent in vitro response to NNs. In nectar, we saw no effects of NN treatment on NIM community metrics. Rather, NIM abundance and diversity responded to inherent plant qualities like nectar volume. In conclusion, we found no evidence that NIMs respond to field‐relevant NN levels in nectar within 24 h, but our study suggests that context, specifically assay methods, time and plant traits, is important in assaying the effects of NNs on microbial communities.more » « less
An official website of the United States government

