skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Spectral Bias of the Deep Image Prior
The "deep image prior" proposed by Ulyanov et al. is an intriguing property of neural nets: a convolutional encoder-decoder network can be used as a prior for natural images. The network architecture implicitly introduces a bias; If we train the model to map white noise to a corrupted image, this bias guides the model to fit the true image before fitting the corrupted regions. This paper explores why the deep image prior helps in denoising natural images. We present a novel method to analyze trajectories generated by the deep image prior optimization and demonstrate: (i) convolution layers of the an encoder-decoder decouple the frequency components of the image, learning each at different rates (ii) the model fits lower frequencies first, making early stopping behave as a low pass filter. The experiments study an extension of Cheng et al which showed that at initialization, the deep image prior is equivalent to a stationary Gaussian process.  more » « less
Award ID(s):
1661259
PAR ID:
10162414
Author(s) / Creator(s):
Date Published:
Journal Name:
Bayesian Deep Learning Workshop and Advances in Neural Information Processing Systems (NeurIPS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Convolutional Neural Networks (CNNs) have emerged as highly successful tools for image generation, recovery, and restoration. A major contributing factor to this success is that convolutional networks impose strong prior assumptions about natural images. A surprising experiment that highlights this architectural bias towards natural images is that one can remove noise and corruptions from a natural image without using any training data, by simply fitting (via gradient descent) a randomly initialized, over-parameterized convolutional generator to the corrupted image. While this over-parameterized network can fit the corrupted image perfectly, surprisingly after a few iterations of gradient descent it generates an almost uncorrupted image. This intriguing phenomenon enables state-of-the-art CNN-based denoising and regularization of other inverse problems. In this paper, we attribute this effect to a particular architectural choice of convolutional networks, namely convolutions with fixed interpolating filters. We then formally characterize the dynamics of fitting a two-layer convolutional generator to a noisy signal and prove that early-stopped gradient descent denoises/regularizes. Our proof relies on showing that convolutional generators fit the structured part of an image significantly faster than the corrupted portion. 
    more » « less
  2. Convolutional Neural Networks (CNNs) have emerged as highly successful tools for image generation, recovery, and restoration. This success is often attributed to large amounts of training data. However, recent experimental findings challenge this view and instead suggest that a major contributing factor to this success is that convolutional networks impose strong prior assumptions about natural images. A surprising experiment that highlights this architectural bias towards natural images is that one can remove noise and corruptions from a natural image without using any training data, by simply fitting (via gradient descent) a randomly initialized, over-parameterized convolutional generator to the single corrupted image. While this over-parameterized network can fit the corrupted image perfectly, surprisingly after a few iterations of gradient descent one obtains the uncorrupted image. This intriguing phenomena enables state-of-the-art CNN-based denoising and regularization of linear inverse problems such as compressive sensing. In this paper we take a step towards demystifying this experimental phenomena by attributing this effect to particular architectural choices of convolutional networks, namely convolutions with fixed interpolating filters. We then formally characterize the dynamics of fitting a two layer convolutional generator to a noisy signal and prove that earlystopped gradient descent denoises/regularizes. This results relies on showing that convolutional generators fit the structured part of an image significantly faster than the corrupted portion 
    more » « less
  3. Deep neural networks, in particular convolutional neural networks, have become highly effective tools for compressing images and solving inverse problems including denoising, inpainting, and reconstruction from few and noisy measurements. This success can be attributed in part to their ability to represent and generate natural images well. Contrary to classical tools such as wavelets, image-generating deep neural networks have a large number of parameters---typically a multiple of their output dimension---and need to be trained on large datasets. In this paper, we propose an untrained simple image model, called the deep decoder, which is a deep neural network that can generate natural images from very few weight parameters. The deep decoder has a simple architecture with no convolutions and fewer weight parameters than the output dimensionality. This underparameterization enables the deep decoder to compress images into a concise set of network weights, which we show is on par with wavelet-based thresholding. Further, underparameterization provides a barrier to overfitting, allowing the deep decoder to have state-of-the-art performance for denoising. The deep decoder is simple in the sense that each layer has an identical structure that consists of only one upsampling unit, pixel-wise linear combination of channels, ReLU activation, and channelwise normalization. This simplicity makes the network amenable to theoretical analysis, and it sheds light on the aspects of neural networks that enable them to form effective signal representations. 
    more » « less
  4. Image restoration and denoising has been a challenging problem in optics and computer vision. There has been active research in the optics and imaging communities to develop a robust, data-efficient system for image restoration tasks. Recently, physics-informed deep learning has received wide interest in scientific problems. In this paper, we introduce a three-dimensional integral imaging-based physics-informed unsupervised CycleGAN algorithm for underwater image descattering and recovery using physics-informed CycleGAN (Generative Adversarial Network). The system consists of a forward and backward pass. The base architecture consists of an encoder and a decoder. The encoder takes the clean image along with the depth map and the degradation parameters to produce the degraded image. The decoder takes the degraded image generated by the encoder along with the depth map and produces the clean image along with the degradation parameters. In order to provide physical significance for the input degradation parameter w.r.t a physical model for the degradation, we also incorporated the physical model into the loss function. The proposed model has been assessed under the dataset curated through underwater experiments at various levels of turbidity. In addition to recovering the original image from the degraded image, the proposed algorithm also helps to model the distribution under which the degraded images have been sampled. Furthermore, the proposed three-dimensional Integral Imaging approach is compared with the traditional deep learning-based approach and 2D imaging approach under turbid and partially occluded environments. The results suggest the proposed approach is promising, especially under the above experimental conditions. 
    more » « less
  5. Deep learning algorithms have been successfully adopted to extract meaningful information from digital images, yet many of them have been untapped in the semantic image segmentation of histopathology images. In this paper, we propose a deep convolutional neural network model that strengthens Atrous separable convolutions with a high rate within spatial pyramid pooling for histopathology image segmentation. A well-known model called DeepLabV3Plus was used for the encoder and decoder process. ResNet50 was adopted for the encoder block of the model which provides us the advantage of attenuating the problem of the increased depth of the network by using skip connections. Three Atrous separable convolutions with higher rates were added to the existing Atrous separable convolutions. We conducted a performance evaluation on three tissue types: tumor, tumor-infiltrating lymphocytes, and stroma for comparing the proposed model with the eight state-of-the-art deep learning models: DeepLabV3, DeepLabV3Plus, LinkNet, MANet, PAN, PSPnet, UNet, and UNet++. The performance results show that the proposed model outperforms the eight models on mIOU (0.8058/0.7792) and FSCR (0.8525/0.8328) for both tumor and tumor-infiltrating lymphocytes. 
    more » « less