skip to main content


Title: BOND: Bert-Assisted Open-Domain Named Entity Recognition with Distant Supervision
We study the open-domain named entity recognition (NER) prob- lem under distant supervision. The distant supervision, though does not require large amounts of manual annotations, yields highly in- complete and noisy distant labels via external knowledge bases. To address this challenge, we propose a new computational framework – BOND, which leverages the power of pre-trained language models (e.g., BERT and RoBERTa) to improve the prediction performance of NER models. Specifically, we propose a two-stage training algo- rithm: In the first stage, we adapt the pre-trained language model to the NER tasks using the distant labels, which can significantly improve the recall and precision; In the second stage, we drop the distant labels, and propose a self-training approach to further improve the model performance. Thorough experiments on 5 bench- mark datasets demonstrate the superiority of BOND over existing distantly supervised NER methods. The code and distantly labeled data have been released in https://github.com/cliang1453/BOND.  more » « less
Award ID(s):
1717916
NSF-PAR ID:
10162617
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Supervised deep learning methods have achieved state-of-the-art performance on the task of named entity recognition (NER). However, such methods suffer from high cost and low efficiency in training data annotation, leading to highly specialized NER models that cannot be easily adapted to new domains. Recently, distant supervision has been applied to replace human annotation, thanks to the fast development of domain-specific knowledge bases. However, the generated noisy labels pose significant challenges in learning effective neural models with distant supervision. We propose PATNER, a distantly supervised NER model that effectively deals with noisy distant supervision from domain-specific dictionaries. PATNER does not require human-annotated training data but only relies on unlabeled data and incomplete domain-specific dictionaries for distant supervision. It incorporates the distant labeling uncertainty into the neural model training to enhance distant supervision. We go beyond the traditional sequence labeling framework and propose a more effective fuzzy neural model using the tie-or-break tagging scheme for the NER task. Extensive experiments on three benchmark datasets in two domains demonstrate the power of PATNER. Case studies on two additional real-world datasets demonstrate that PATNER improves the distant NER performance in both entity boundary detection and entity type recognition. The results show a great promise in supporting high quality named entity recognition with domain-specific dictionaries on a wide variety of entity types. 
    more » « less
  2. null (Ed.)
    Identifying and understanding quality phrases from context is a fundamental task in text mining. The most challenging part of this task arguably lies in uncommon, emerging, and domain-specific phrases. The infrequent nature of these phrases significantly hurts the performance of phrase mining methods that rely on sufficient phrase occurrences in the input corpus. Context-aware tagging models, though not restricted by frequency, heavily rely on domain experts for either massive sentence-level gold labels or handcrafted gazetteers. In this work, we propose UCPhrase, a novel unsupervised context-aware quality phrase tagger. Specifically, we induce high-quality phrase spans as silver labels from consistently co-occurring word sequences within each document. Compared with typical context-agnostic distant supervision based on existing knowledge bases (KBs), our silver labels root deeply in the input domain and context, thus having unique advantages in preserving contextual completeness and capturing emerging, out-of-KB phrases. Training a conventional neural tagger based on silver labels usually faces the risk of overfitting phrase surface names. Alternatively, we observe that the contextualized attention maps generated from a Transformer-based neural language model effectively reveal the connections between words in a surface-agnostic way. Therefore, we pair such attention maps with the silver labels to train a lightweight span prediction model, which can be applied to new input to recognize (unseen) quality phrases regardless of their surface names or frequency. Thorough experiments on various tasks and datasets, including corpus-level phrase ranking, document-level keyphrase extraction, and sentence-level phrase tagging, demonstrate the superiority of our design over state-of-the-art pre-trained, unsupervised, and distantly supervised methods. 
    more » « less
  3. Scientific literature analysis needs fine-grained named entity recognition (NER) to provide a wide range of information for scientific discovery. For example, chemistry research needs to study dozens to hundreds of distinct, fine-grained entity types, making consistent and accurate annotation difficult even for crowds of domain experts. On the other hand, domain-specific ontologies and knowledge bases (KBs) can be easily accessed, constructed, or integrated, which makes distant supervision realistic for fine-grained chemistry NER. In distant supervision, training labels are generated by matching mentions in a document with the concepts in the knowledge bases (KBs). However, this kind of KB-matching suffers from two major challenges: incomplete annotation and noisy annotation. We propose ChemNER, an ontology-guided, distantly-supervised method for fine-grained chemistry NER to tackle these challenges. It leverages the chemistry type ontology structure to generate distant labels with novel methods of flexible KB-matching and ontology-guided multi-type disambiguation. It significantly improves the distant label generation for the subsequent sequence labeling model training. We also provide an expert-labeled, chemistry NER dataset with 62 fine-grained chemistry types (e.g., chemical compounds and chemical reactions). Experimental results show that ChemNER is highly effective, outperforming substantially the state-of-the-art NER methods (with .25 absolute F1 score improvement). 
    more » « less
  4. Fine-tuning pre-trained language models is a common practice in building NLP models for various tasks, including the case with less supervision. We argue that under the few-shot setting, formulating fine-tuning closer to the pre-training objective shall be able to unleash more benefits from the pre-trained language models. In this work, we take few-shot named entity recognition (NER) for a pilot study, where existing fine-tuning strategies are much different from pre-training. We propose a novel few-shot fine-tuning framework for NER, FFF-NER. Specifically, we introduce three new types of tokens, “is-entity”, “which-type” and “bracket”, so we can formulate the NER fine-tuning as (masked) token prediction or generation, depending on the choice of the pre-training objective. In our experiments, we apply to fine-tune both BERT and BART for few-shot NER on several benchmark datasets and observe significant improvements over existing fine-tuning strategies, including sequence labeling, prototype meta-learning, and prompt-based approaches. We further perform a series of ablation studies, showing few-shot NER performance is strongly correlated with the similarity between fine-tuning and pre-training. 
    more » « less
  5. Recent relation extraction (RE) works have shown encouraging improvements by conducting contrastive learning on silver labels generated by distant supervision before fine-tuning on gold labels. Existing methods typically assume all these silver labels are accurate and treat them equally; however, distant supervision is inevitably noisy–some silver labels are more reliable than others. In this paper, we propose fine-grained contrastive learning (FineCL) for RE, which leverages fine-grained information about which silver labels are and are not noisy to improve the quality of learned relationship representations for RE. We first assess the quality of silver labels via a simple and automatic approach we call “learning order denoising,” where we train a language model to learn these relations and record the order of learned training instances. We show that learning order largely corresponds to label accuracy–early-learned silver labels have, on average, more accurate labels than later-learned silver labels. Then, during pre-training, we increase the weights of accurate labels within a novel contrastive learning objective. Experiments on several RE benchmarks show that FineCL makes consistent and significant performance gains over state-of-the-art methods. 
    more » « less