skip to main content


Search for: All records

Award ID contains: 1717916

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The global spread of COVID-19, the disease caused by the novel coronavirus SARS-CoV-2, has casted a significant threat to mankind. As the COVID-19 situation continues to evolve, predicting localized disease severity is crucial for advanced resource allocation. This paper proposes a method named COURAGE (COUnty aggRegation mixup AuGmEntation) to generate a short-term prediction of 2-week-ahead COVID-19 related deaths for each county in the United States, leveraging modern deep learning techniques. Specifically, our method adopts a self-attention model from Natural Language Processing, known as the transformer model, to capture both short-term and long-term dependencies within the time series while enjoying computational efficiency. Our model solely utilizes publicly available information for COVID-19 related confirmed cases, deaths, community mobility trends and demographic information, and can produce state-level predictions as an aggregation of the corresponding county-level predictions. Our numerical experiments demonstrate that our model achieves the state-of-the-art performance among the publicly available benchmark models. 
    more » « less
  2. We study the open-domain named entity recognition (NER) prob- lem under distant supervision. The distant supervision, though does not require large amounts of manual annotations, yields highly in- complete and noisy distant labels via external knowledge bases. To address this challenge, we propose a new computational framework – BOND, which leverages the power of pre-trained language models (e.g., BERT and RoBERTa) to improve the prediction performance of NER models. Specifically, we propose a two-stage training algo- rithm: In the first stage, we adapt the pre-trained language model to the NER tasks using the distant labels, which can significantly improve the recall and precision; In the second stage, we drop the distant labels, and propose a self-training approach to further improve the model performance. Thorough experiments on 5 bench- mark datasets demonstrate the superiority of BOND over existing distantly supervised NER methods. The code and distantly labeled data have been released in https://github.com/cliang1453/BOND. 
    more » « less
  3. Modern data acquisition routinely produce massive amounts of event sequence data in various domains, such as social media, healthcare, and financial markets. These data often ex- hibit complicated short-term and long-term temporal dependencies. However, most of the ex- isting recurrent neural network-based point process models fail to capture such dependencies, and yield unreliable prediction performance. To address this issue, we propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long- term dependencies and meanwhile enjoys computational efficiency. Numerical experiments on various datasets show that THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin. Moreover, THP is quite general and can incorpo- rate additional structural knowledge. We provide a concrete example, where THP achieves im- proved prediction performance for learning multiple point processes when incorporating their relational information. 
    more » « less
  4. Transfer learning has fundamentally changed the landscape of natural language processing (NLP). Many state-of-the-art models are first pre-trained on a large text corpus and then fine-tuned on downstream tasks. However, due to limited data resources from downstream tasks and the extremely high complexity of pre-trained models, aggressive fine-tuning of- ten causes the fine-tuned model to overfit the training data of downstream tasks and fail to generalize to unseen data. To address such an issue in a principled manner, we propose a new learning framework for robust and efficient fine-tuning for pre-trained models to attain better generalization performance. The pro- posed framework contains two important in- gredients: 1. Smoothness-inducing regulariza- tion, which effectively manages the complex- ity of the model; 2. Bregman proximal point optimization, which is an instance of trust- region methods and can prevent aggressive up- dating. Our experiments show that the pro- posed framework achieves new state-of-the-art performance on a number of NLP tasks includ- ing GLUE, SNLI, SciTail and ANLI. More- over, it also outperforms the state-of-the-art T5 model, which is the largest pre-trained model containing 11 billion parameters, on GLUE. 
    more » « less