To stabilize and transport them through complex systems, nanoparticles are often encapsulated in polymeric nanocarriers, which are tailored to specific environments. For example, a hydrophilic polymer capsule maintains circulation and stability of nanoparticles in aqueous environments. A more highly-designed nanocarrier might have a hydrophobic core and a hydrophilic shell to allow transport of hydrophobic nanoparticles and pharmaceuticals through physiological media. Polydimethylsiloxane, PDMS, is a hydrophobic material in a liquidlike state at room temperature. The preparation of stable, aqueous dispersions of PDMS droplets in water is problematic due to the intense mismatch in surface energies between PDMS and water. The present work describes the encapsulation of hydrophobic metal- and metal oxide nanoparticles within PDMS nanodroplets using flash nanoprecipitation. The PDMS is terminated by amino groups and the nanodroplet is capped with a layer of poly(styrene sulfonate), forming a glassy outer shell. The hydrophobic nanoparticles nucleate PDMS droplet formation, decreasing the droplet size. The resulting nanocomposite nanodroplets are stable in aqueous salt solutions without the use of surfactants. The hierarchical structuring, elucidated with small angle x-ray scattering, offers a new platform for the isolation and transport of hydrophobic molecules and nanoparticles through aqueous systems.
more »
« less
Synthesis and Crystallographic Characterization of X-Substituted 2,4-Dinitrophenyl-4′-phenylbenzenesulfonates
Treatment of 2,4-dinitrophenol with sulfonyl chlorides in the presence of pyridine results in the formation of undesired pyridinium salts. In non-aqueous environments, the formation of the insoluble pyridinium salt greatly affects the formation of the desired product. A facile method of producing the desired sulfonate involves the use of an aqueous base with a water-miscible solvent. Herein, we present the optimization of methods for the formation of sulfonates and its application in the production of desired x-substituted 2,4-dinitrophenyl-4′-phenylbenzenesulfonates. This strategy is environmentally benign and supports a wide range of starting materials. Additionally, the intermolecular interactions of these sulfonate compounds were investigated using single-crystal x-ray diffraction data.
more »
« less
- Award ID(s):
- 1725699
- PAR ID:
- 10162656
- Date Published:
- Journal Name:
- Chemistry
- Volume:
- 2
- Issue:
- 2
- ISSN:
- 2624-8549
- Page Range / eLocation ID:
- 591 to 599
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The ditopic halogen-bond (X-bond) donors 1,2-, 1,3-, and 1,4-diiodotetrafluorobenzene (1,2-, 1,3-, and 1,4-di-I-tFb, respectively) form binary cocrystals with the unsymmetrical ditopic X-bond acceptor trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene (2,4-bpe). The components of each cocrystal (1,2-di-I-tFb)·(2,4-bpe), (1,3-di-I-tFb)·(2,4-bpe), and (1,4-di-I-tFb)·(2,4-bpe) assemble via N···I X-bonds. For (1,2-di-I-tFb)·(2,4-bpe) and (1,3-di-I-tFb)·(2,4-bpe), the X-bond donor supports the C=C bonds of 2,4-bpe to undergo a topochemical [2+2] photodimerization in the solid state: UV-irradiation of each solid resulted in stereospecific, regiospecific, and quantitative photodimerization of 2,4-bpe to the corresponding head-to-tail (ht) or head-to-head (hh) cyclobutane photoproduct, respectively.more » « less
-
Abstract The narrow electrochemical stability window of water poses a challenge to the development of aqueous electrolytes. In contrast to non‐aqueous electrolytes, the products of water electrolysis do not contribute to the formation of a passivation layer on electrodes. As a result, aqueous electrolytes require the reactions of additional components, such as additives and co‐solvents, to facilitate the formation of the desired solid electrolyte interphase (SEI) on the anode and cathode electrolyte interphase (CEI) on the cathode. This review highlights the fundamental principles and recent advancements in generating electrolyte interphases in aqueous batteries.more » « less
-
The complex distribution of functional groups in carbohydrates, coupled with their strong solvation in water, makes them challenging targets for synthetic receptors. Despite extensive research into various molecular frameworks, most synthetic carbohydrate receptors have exhibited low affinities, and their interactions with sugars in aqueous environments remain poorly understood. In this work, we present a simple pyridinium-based hydrogen-bonding receptor derived from a subtle structural modification of a well-known tetralactam macrocycle. This small structural change resulted in a dramatic enhancement of glucose binding affinity, increasing from 56 M−1 to 3001 M−1. Remarkably, the performance of our synthetic lectin surpasses that of the natural lectin, concanavalin A, by over fivefold. X-ray crystallography of the macrocycle–glucose complex reveals a distinctive hydrogen bonding pattern, which allows for a larger surface overlap between the receptor and glucose, contributing to the enhanced affinity. Furthermore, this receptor possesses allosteric binding sites, which involve chloride binding and trigger receptor aggregation. This unique allosteric process reveals the critical role of structural flexibility in this hydrogen-bonding receptor for the effective recognition of sugars. We also demonstrate the potential of this synthetic lectin as a highly sensitive glucose sensor in aqueous solutions.more » « less
-
Abstract We report the synthesis and X‐ray crystal structure of a cucurbituril–triptycene chimeric receptor (1). Host1binds to guests typical of CB[6]–CB[8], but also binds to larger guests such as blue box (20) and the Fujita square (22). Intriguingly, the geometries of the1⋅20and1⋅22complexes blur the lines between host and guest in that both components fulfill both roles within each complex. The fluorescence output of1is fully quenched by the formation of complexes with pyridinium‐derived guests.more » « less
An official website of the United States government

