We report a digital microfluidic device to transport aqueous droplets on an open surface in air using electrowetting-on-dielectric (EWOD) with anisotropic ratchet conveyors (ARCs). ARCs are micro-sized periodic semicircular hydrophilic regions on a hydrophobic background, providing anisotropic wettability. SiNx and Cytop are used as the dielectric layer between the water droplet and working electrodes. By adopting parylene as a stencil mask, hydrophilic patterning on the hydrophobic Cytop thin film layer is achieved without the loss of Cytop hydrophobicity. While the traditional EWOD platform requires the control of multiple electrodes to transport the droplet, our system utilizes only two controlling electrodes. We demonstrate that 15 μl water droplets are transported at a speed of 13 mm/s under 60 Vpeak sinusoid AC signal at 50 Hz. Droplet transport at 20 Hz is also presented, demonstrating that the system can operate within a range of frequencies.
- Award ID(s):
- 2103703
- PAR ID:
- 10518761
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- Langmuir
- Volume:
- 39
- Issue:
- 44
- ISSN:
- 0743-7463
- Page Range / eLocation ID:
- 15748 to 15755
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Microcapsules with an aqueous core can be conveniently prepared by water‐in‐oil‐in‐water double emulsion microfluidics. However, conventional shell materials are based on hydrophobic polymers or colloidal particles. Thus, these microcapsules feature a hydrophobic shell impermeable to water‐soluble compounds. Capsules with semipermeable hydrogel shells have been demonstrated but may exhibit poor mechanical properties. Here, amphiphilic polymer conetworks (APCNs) based on poly(2‐hydroxyethyl acrylate)‐
linked by ‐polydimethylsiloxane (PHEA‐l ‐PDMS) are introduced as a new class of wall materials in double emulsion microcapsules. These APCNs are mechanically robust silicone hydrogels that are swellable and permeable to water and are soft and elastic when dry or swollen. Therefore, the microcapsules can be dried and rehydrated multiple times or shrunken in sodium chloride salt solutions without getting damaged. Moreover, the APCNs are permeable for hydrophilic organic compounds and impermeable for macromolecules. Thus, they can be loaded with macromolecules or nanoparticles during microfluidic formation and with organic molecules after capsule synthesis. The microcapsules serve as microreactors for catalytically active platinum nanoparticles that decompose hydrogen peroxide. Finally, the surface of the APCN microcapsules can be selectively functionalized with a cholesterol‐based linker. Concluding, APCN microcapsules could find applications for the controlled delivery of drugs, as microreactors for synthesis, or as scaffolds for synthetic cells. -
Water-mediated interactions (WMIs) are responsible for diverse processes in aqueous solutions, including protein folding and nanoparticle aggregation. WMI may be affected by changes in temperature and pressure, and hence, they can alter chemical/physical processes that occur in aqueous environments. Traditionally, attention has been focused on hydrophobic interactions while, in comparison, the role of hydrophilic and hybrid (hydrophobic–hydrophilic) interactions have been mostly overlooked. Here, we study the role of T and P on the WMI between nanoscale (i) hydrophobic–hydrophobic, (ii) hydrophilic–hydrophilic, and (iii) hydrophilic–hydrophobic pairs of (hydroxylated/non-hydroxylated) graphene-based surfaces. We find that hydrophobic, hydrophilic, and hybrid interactions are all sensitive to P. However, while hydrophobic interactions [case (i)] are considerably sensitive to T-variations, hydrophilic [case (ii)] and hybrid interactions [case (iii)] are practically T-independent. An analysis of the entropic and enthalpic contributions to the potential of mean force for cases (i)–(iii) is also presented. Our results are important in understanding T- and P-induced protein denaturation and the interactions of biomolecules in solution, including protein aggregation and phase separation processes. From the computational point of view, the results presented here are relevant in the design of implicit water models for the study of molecular and colloidal/nanoparticle systems at different thermodynamic conditions.more » « less
-
null (Ed.)Droplet-based microfluidics is used to fabricate thin shell hydrogel microcapsules for the removal of methylene blue (MB) from aqueous solutions. The microcapsules composed of a poly(methacrylic acid) hydrogel shell exhibit unique properties, including permeation, separation, purification, and reaction of molecular species. Photocatalytic TiO 2 and ZnO nanoparticles encapsulated in the microcapsules, i.e. photocatalyst in capsule (PIC), are used to remove organic pollutants using an adsorption–oxidation mechanism. A prototype flow microreactor is assembled to demonstrate a controllable water purification approach in short time using photocatalysts. Our studies of aqueous and homogeneous hydrogel environments for the photocatalysts provide important insights into understanding the effectiveness of MB removal. Hydrogel capsules have MB removal rate comparable to homogeneous particles. Further reduction of both capsule and photocatalyst sizes can potentially aid in quicker water purification.more » « less
-
Liquid metal (LM) has attracted tremendous interest over the past decade for its enabling combination of high electrical and thermal conductivity and low mechanical compliance and viscosity. Efforts to harness LM in electronics, robotics, and biomedical applications have largely involved methods to encapsulate the liquid so that it can support functionality without leaking or smearing. In recent years, there has been increasing interest in LM “nanocomposites” in which either liquid metal is mixed with metallic nanoparticles or nanoscale droplets of liquid metal are suspended within a soft polymer matrix. Both of these material systems represent an important step towards utilizing liquid metal for breakthrough applications. In this minireview, we present a brief overview of recent progress over the past few years in methods to synthesize LM nanomaterials and utilize them as transducers for sensing, actuation, and energy harvesting. In particular, we focus on techniques for stable synthesis of LM nanodroplets, suspension of nanodroplets within various matrix materials, and methods for incorporating metallic nanoparticles within an LM matrix.more » « less