skip to main content

Title: Stability of sodalite relative to nepheline in NaCl–H2O brines at 750 °C: Implications for hydrothermal formation of sodalite
ABSTRACT Formation of the feldspathoid sodalite (Na6Al6Si6O24·2NaCl) by reaction of nepheline (NaAlSiO4) with NaCl-bearing brines was investigated at 3 and 6 kbar and at a constant temperature of 750 °C to determine the brine concentration at which sodalite forms with variation in pressure. The reaction boundary was located by reaction-reversal experiments in the system NaAlSiO4–NaCl–H2O at a brine concentration of 0.16 ± 0.08 XNaCl [= molar ratio NaCl/(NaCl + H2O)] at 3 kbar and at a brine concentration of 0.35 ± 0.03 XNaCl at 6 kbar. Characterization of the sodalite using both X-ray diffraction and infrared spectroscopy after treatment in these brines indicated no obvious evidence of water or hydroxyl incorporation into the cage structure of sodalite. The data from this study were combined with earlier results by Wellman (1970) and Sharp et al. (1989) at lower (1–1.5 kbar) and higher (7–8 kbar) pressures, respectively, on sodalite formation from nepheline and NaCl which models as a concave-down curve in XNaCl – P space. In general, sodalite buffers the concentration of neutral aqueous NaCl° in the brine to relatively low values at P < 4 kbar, but NaCl° increases rapidly at higher pressures. Thermochemical modeling of these data was done to determine the activity of the aqueous NaCl° relative to a 1 molal (m) standard state, demonstrating very low activities (<0.2 m, or 1.2 wt.%) of NaCl° at 3 kbar and lower, but rising to relatively high activities (>20 m, or 54 wt.%) of NaCl° at 6 kbar or higher. The results from this study place constraints on the concentration of NaCl° in brines coexisting with nepheline and sodalite and, because of the relative insensitivity of this reaction to temperature, can provide a convenient geobarometer for those localities where the fluid compositions that formed nepheline and sodalite can be determined independently.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
The Canadian Mineralogist
Page Range / eLocation ID:
3 to 18
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Iron-rich phyllosilicates on Mars comprise nearly 90% of the H2O- and OH-bearing phases observed directly by rovers and remotely by orbiters (Chemtob et al., 2017, JGR). Theories concerning the possible origin of Fe-rich smectite during Mars’ earliest history (phyllosian) are hard to test because of limited knowledge of the upper-thermal stability of Fe-rich phyllosilicates. In this study we present data on the upper-thermal stability of a pure-iron smectite to put some minimum constraints on its possible high-temperature origin early in Mars history either from a primordial atmosphere or by hydrothermal activity. Smectite coexisting with quartz and magnetite was synthesized from the oxides in the system Na2O-FeO-Fe2O3-Al2O3-SiO2-H2O at 500°C and 2 kbar and fO2 near FMQ. Reversal experiments involved mixtures with equal portions of the smectite-synthesis and breakdown products (quartz, fayalite, albite, magnetite (mt) treated in the presence of about 10 wt% H2O over the range of 1-3 kbar and 530-640°C. The average composition (electron microprobe) of smectite formed both in synthesis and in reversal experiments was Na0.35(Fe2+2.28Fe3+0.31Al0.41)(Al1.07Si2.93)O10(OH)2·nH2O, where ferric iron was calculated by summing the octahedral cations to 3.0. Reversals for the reaction smec+mt1 = fayalite+albite+mt2+quartz+H2O were obtained at 538±8, 590±10, and 610±10°C at 1, 2, and 3 kbar, respectively, where mt1 and mt2 have the approximate compositions Fe2.8Si0.2O4 and Fe2.8Al0.1O4, respectively, with all other phases being pure. This smectite has up to 2 interlayer H2O at 25°C (and high humidity), losing 1 H2O at <50°C, and the second at 125 ± 25°C. Thermodynamic modeling of this reaction was used to extrapolate the upper-thermal stability of this Fe-smectite down to 10 bars and approximately 239°C. Applications of these results indicate the maximum temperature for forming Fe-smectite from a dense primordial atmosphere of 100 bars is 390 ± 25°C. Crustal storage of water in Fe-smectite ranges up to a maximum of 10.7 wt% at ~2 km and 40°C, 7.4 wt% at 6 km and 120°C, and 3.8 wt% H2O at 32 km and 625°C for a Noachian geotherm of 20°C/km. Plain language summary: This study presents experimental limits on the temperatures at which the clay mineral smectite might form on Mars, either from a dense primordial atmosphere (390°C at 100 bars) or by high-temperature hydrothermal activity (625°C at 32 km). Because this study deals with iron end-member clay, these are minimum temperatures; any solid solution with magnesium will increase these temperatures. 
    more » « less
  2. Abstract Scapolites are pervasive rock-forming aluminosilicates that are found in metamorphic, igneous, and hydrothermal environments; nonetheless, the stability field of Cl-rich scapolite is not well constrained. This experimental study investigated two reactions involving Cl-rich scapolite. First, the anhydrous reaction 1 of plagioclase + halite + calcite to form scapolite [modeled as: 3 plagioclase (Ab80An20) + 0.8 NaCl + 0.2 CaCO3 = scapolite (Ma80Me20)] was investigated to determine the effect of the Ca-rich meionite (Me = Ca4Al6Si6O24CO3) component on the Na end-member marialite (Ma = Na4Al3Si9O24Cl). Second, the effect of water on this reaction was investigated using the hydrothermally equivalent reaction 2, H2O + scapolite (Ma80Me20) = 3 plagioclase (Ab80An20) + CaCO3 + liquid, where the liquid is assumed to be a saline-rich hydrous-silicate melt. Experiments were conducted with synthetic phases over the range of 500–1030 °C and 0.4–2.0 GPa. For reaction 1, intermediate composition scapolite shows a wide thermal stability and is stable relative to plagioclase + halite + calcite at temperatures above 750 °C at 0.4 GPa and 760 °C at 2.0 GPa. For reaction 2, intermediate scapolite appears to be quite tolerant of water; it forms at a minimum bulk salinity [XNaCl = molar ratio of NaCl/(NaCl+H2O)] of the brine of approximately 0.2 XNaCl at 830 and 680 °C at pressures of 2.0 and 1.5 GPa, respectively. Based on the study done by Almeida and Jenkins (2017), pure marialite is very intolerant of water when compared to intermediate composition scapolite. Compositional changes in the scapolite and plagioclase were characterized by X-ray diffraction and electron microprobe analysis and found to shift from the nominal bulk compositions to the observed compositions of Ma85Me15 for scapolite and to Ab91An09 for plagioclase. These results were used to model the phase equilibria along the marialitemeionite join in temperature-composition space. This study demonstrates that a small change in the scapolite composition from end-member marialite to Ma85Me15 expands the stability field of marialite significantly, presumably due to the high entropy of mixing in scapolite, as well as increases its tolerance to water. This supports the much more common presence of intermediate scapolites in hydrothermal settings than either end-member meionite or marialite as is widely reported in the literature. 
    more » « less
  3. Permeation of water in a poorly wettable material results in a conversion of pressure/volume work into surface free energy representing a novel form of energy storage. The addition of salt increases the amount of stored energy and can reduce the hysteresis of the infiltration−expulsion cycle. Our molecular simulations provide a theoretical perspective into the mechanisms involved in the process and underlying structures and interactions in compressed nanoconfined solutions. We consider aqueous NaCl in nanosized confinements at pressures of up to 3 kbar. Open ensemble Monte Carlo simulations utilizing fractional exchanges of molecules for efficient addition−removal of ions have been utilized in conjunction with pressure-dependent chemical potentials to model bulk phases under pressure. Confinements open to these pressurized bulk, aqueous electrolyte phases show reversibility at narrow pore sizes and irreversibility in wider ones, consistent with experiment. The addition of salt increases in the solid−liquid interfacial tension in narrower pores and associated infiltration and expulsion pressures. These changes are consistent with strong desalination effects at the lower pore size observed irrespective of external pressure and initial concentration. 
    more » « less
  4. Abstract Acoustic compressional and shear wave velocities (VP, VS) of anhydrous (AHRG) and hydrous rhyolitic glasses (HRG) containing 3.28 wt% (HRG-3) and 5.90 wt% (HRG-6) total water concentration (H2Ot) have been measured using Brillouin light scattering (BLS) spectroscopy up to 3 GPa in a diamond-anvil cell at ambient temperature. In addition, Fourier-transform infrared (FTIR) spectroscopy was used to measure the speciation of H2O in the glasses up to 3 GPa. At ambient pressure, HRG-3 contains 1.58 (6) wt% hydroxyl groups (OH–) and 1.70 (7) wt% molecular water (H2Om) while HRG-6 contains 1.67 (10) wt% OH– and 4.23 (17) wt% H2Om where the numbers in parentheses are ±1σ. With increasing pressure, very little H2Om, if any, converts to OH– within uncertainties in hydrous rhyolitic glasses such that HRG-6 contains much more H2Om than HRG-3 at all experimental pressures. We observe a nonlinear relationship between high-pressure sound velocities and H2Ot, which is attributed to the distinct effects of each water species on acoustic velocities and elastic moduli of hydrous glasses. Near ambient pressure, depolymerization due to OH– reduces VS and G more than VP and KS. VP and KS in both anhydrous and hydrous glasses decrease with increasing pressure up to ~1–2 GPa before increasing with pressure. Above ~1–2 GPa, VP and KS in both hydrous glasses converge with those in AHRG. In particular, VP in HRG-6 crosses over and becomes higher than VP in AHRG. HRG-6 displays lower VS and G than HRG-3 near ambient pressure, but VS and G in these glasses converge above ~2 GPa. Our results show that hydrous rhyolitic glasses with ~2–4 wt% H2Om can be as incompressible as their anhydrous counterpart above ~1.5 GPa. The nonlinear effects of hydration on high-pressure acoustic velocities and elastic moduli of rhyolitic glasses observed here may provide some insight into the behavior of hydrous silicate melts in felsic magma chambers at depth. 
    more » « less
  5. Abstract

    Many lines of evidence from high P–T experiments, thermodynamic models, and natural observations suggest that slab-derived aqueous fluids, which flux mantle wedges contain variable amounts of dissolved carbon. However, constraints on the effects of H2O–CO2 fluids on mantle melting, particularly at mantle wedge P–T conditions, are limited. Here, we present new piston cylinder experiments on fertile and depleted peridotite compositions with 3.5 wt.% H2O and XCO2 [= molar CO2 / (CO2 + H2O)] of 0.04–0.17. Experiments were performed at 2–3 GPa and 1350°C to assess how temperature, peridotite fertility, and XCO2 of slab-derived fluid affects partial melting in mantle wedges. All experiments produce olivine + orthopyroxene +7 to 41 wt.% partial melt. Our new data, along with previous lower temperature data, show that as mantle wedge temperature increases, primary melts become richer in SiO2, FeO*, and MgO and poorer CaO, Al2O3, and alkalis when influenced by H2O–CO2 fluids. At constant P–T and bulk H2O content, the extent of melting in the mantle wedge is largely controlled by peridotite fertility and XCO2 of slab-fluid. High XCO2 depleted compositions generate ~7 wt.% melt, whereas, at identical P–T, low XCO2 fertile compositions generate ~30 to 40 wt.% melt. Additionally, peridotite fertility and XCO2 have significant effects on peridotite partial melt compositions. At a constant P–T–XCO2, fertile peridotites generate melts richer in CaO and Al2O3 and poorer in SiO2, MgO + FeO, and alkalis. Similar to previous experimental studies, at a constant P–T fertility condition, as XCO2 increases, SiO2 and CaO of melts systematically decrease and increase, respectively. Such distinctive effects of oxidized form of dissolved carbon on peridotite partial melt compositions are not observed if the carbon-bearing fluid is reduced, such as CH4-bearing. Considering the large effect of XCO2 on melt SiO2 and CaO concentrations and the relatively oxidized nature of arc magmas, we compare the SiO2/CaO of our experimental melts and melts from previous peridotite + H2O ± CO2 studies to the SiO2/CaO systematics of primitive arc basalts and ultra-calcic, silica-undersaturated arc melt inclusions. From this comparison, we demonstrate that across most P–T–fertility conditions predicted for mantle wedges, partial melts from bulk compositions with XCO2 ≥ 0.11 have lower SiO2/CaO than all primitive arc melts found globally, even when correcting for olivine fractionation, whereas partial melts from bulk compositions with XCO2 = 0.04 overlap the lower end of the SiO2/CaO field defined by natural data. These results suggest that the upper XCO2 limit of slab-fluids influencing primary arc magma formation is 0.04 < XCO2 < 0.11, and this upper limit is likely to apply globally. Lastly, we show that the anomalous SiO2/CaO and CaO/Al2O3 signatures observed in ultra-calcic arc melt inclusions can be reproduced by partial melting of either CO2-bearing hydrous fertile and depleted peridotites with 0 < XCO2 < 0.11 at 2–3 GPa, or from nominally CO2-free hydrous fertile peridotites at P > 3 GPa.

    more » « less