skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-temperature Stability of an Iron-rich Smectite: Implications for Smectite Formation on Mars
Iron-rich phyllosilicates on Mars comprise nearly 90% of the H2O- and OH-bearing phases observed directly by rovers and remotely by orbiters (Chemtob et al., 2017, JGR). Theories concerning the possible origin of Fe-rich smectite during Mars’ earliest history (phyllosian) are hard to test because of limited knowledge of the upper-thermal stability of Fe-rich phyllosilicates. In this study we present data on the upper-thermal stability of a pure-iron smectite to put some minimum constraints on its possible high-temperature origin early in Mars history either from a primordial atmosphere or by hydrothermal activity. Smectite coexisting with quartz and magnetite was synthesized from the oxides in the system Na2O-FeO-Fe2O3-Al2O3-SiO2-H2O at 500°C and 2 kbar and fO2 near FMQ. Reversal experiments involved mixtures with equal portions of the smectite-synthesis and breakdown products (quartz, fayalite, albite, magnetite (mt) treated in the presence of about 10 wt% H2O over the range of 1-3 kbar and 530-640°C. The average composition (electron microprobe) of smectite formed both in synthesis and in reversal experiments was Na0.35(Fe2+2.28Fe3+0.31Al0.41)(Al1.07Si2.93)O10(OH)2·nH2O, where ferric iron was calculated by summing the octahedral cations to 3.0. Reversals for the reaction smec+mt1 = fayalite+albite+mt2+quartz+H2O were obtained at 538±8, 590±10, and 610±10°C at 1, 2, and 3 kbar, respectively, where mt1 and mt2 have the approximate compositions Fe2.8Si0.2O4 and Fe2.8Al0.1O4, respectively, with all other phases being pure. This smectite has up to 2 interlayer H2O at 25°C (and high humidity), losing 1 H2O at <50°C, and the second at 125 ± 25°C. Thermodynamic modeling of this reaction was used to extrapolate the upper-thermal stability of this Fe-smectite down to 10 bars and approximately 239°C. Applications of these results indicate the maximum temperature for forming Fe-smectite from a dense primordial atmosphere of 100 bars is 390 ± 25°C. Crustal storage of water in Fe-smectite ranges up to a maximum of 10.7 wt% at ~2 km and 40°C, 7.4 wt% at 6 km and 120°C, and 3.8 wt% H2O at 32 km and 625°C for a Noachian geotherm of 20°C/km. Plain language summary: This study presents experimental limits on the temperatures at which the clay mineral smectite might form on Mars, either from a dense primordial atmosphere (390°C at 100 bars) or by high-temperature hydrothermal activity (625°C at 32 km). Because this study deals with iron end-member clay, these are minimum temperatures; any solid solution with magnesium will increase these temperatures.  more » « less
Award ID(s):
1725053
PAR ID:
10280286
Author(s) / Creator(s):
;
Date Published:
Journal Name:
American Geophysical Union meeting, Fall 2020 Meeting
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Whole rock compositions at Buldir Volcano, western Aleutian arc, record a strong, continuous trend of iron depletion with decreasing MgO, classically interpreted as a calc-alkaline liquid line of descent. In contrast, olivine-hosted melt inclusions have higher total iron (FeO*) than whole rocks and show little change in FeO* with decreasing MgO. To investigate this discrepancy and determine the conditions required for strong iron depletion, we conducted oxygen fugacity (ƒO2) buffered, water-saturated crystallization experiments at 800 MPa and ƒO2 = QFM + 1.6 ± 0.4 (1$$\sigma$$) (where QFM refers to the quartz-fayalite-magnetite buffer) on a high-Al, basaltic starting material modeled after a Buldir lava. Experimental conditions were informed by olivine-hosted melt inclusions that record minimum entrapment pressures as high as 570 MPa, >6 wt % H2O, and ƒO2 of QFM + 1.4 (±0.2), making Buldir one of the most oxidized and wettest arc volcanoes documented globally. The experiments produce melts with Si-enrichment and Fe-depletion signatures characteristic of evolved, calc-alkaline magmas at the lowest MgO, although FeO* remains roughly constant over most of the experimental temperature range. Experiments saturate CrAl-spinel and olivine at 1160°C, followed by clinopyroxene and Al-spinel at 1085°C, hornblende at 1060°C, and, finally, plagioclase and magnetite between 1040°C and 960°C. Hornblende crystallization, not magnetite, generates the largest increase in SiO2 and largest decrease in FeO* in coexisting melts. Compositions of melt inclusions are consistent with experimental melts and reflect crystallization of a basaltic parent magma at high PH2O. In contrast, the whole rock compositional trends are influenced by magma mixing and phenocryst redistribution and accumulation. The crystallization experiments and natural liquids (melt inclusions and groundmass glass) from Buldir suggest that for an oxidized, hydrous primary basalt starting composition, significant Fe depletion from the melt will not occur until intermediate to late stages of magma crystallization (< ~4.5 wt % MgO). We conclude that the Buldir whole rock trend cannot be reproduced by crystallization at arc-relevant oxygen fugacities and is not a true liquid line of descent, warranting caution when interpreting volcanic trends globally. 
    more » « less
  2. Banded iron formations (BIF) are chemically precipitated sediments that can record Archean ocean geochemistry. BIFs are laminated silica- and iron-rich deposits that host a range of iron(II, III) minerals, including hematite, magnetite, siderite, greenalite, minnesotaite, and stilpnomelane. This diverse mineralogical assemblage reflects secondary mineralization reactions due to diagenesis and/or post-depositional alteration. While petrographic observations of BIFs sparingly contain the iron silicate greenalite, recent evidence of greenalite nanoparticles preserved in early-mineralizing BIF chert suggest this mineral was a primary phase in BIF progenitor sediments. Therefore, it is critical to investigate the formation and alteration of greenalite to constrain the Archean ocean environment and help unravel post-depositional processes. To examine how iron silicates precipitate and then crystallize and/or transform during diagenesis, we simulated these two processes under Archean ocean conditions. We first precipitated a poorly ordered Fe-rich serpentine with subsidiary ferrihydrite at neutral pH by performing in situ Fe(II) oxidation experiments at 25 °C in the presence of silica. Subjected to simulated diagenesis at 80 °C, the rudimentary Fe-phyllosilicate transformed into a crystalline phyllosilicate characterized as 30% cronstedtite and 70% greenalite accompanied by magnetite and persistent ferrihydrite. At temperatures ≤150 °C, we continued to observe ferrihydrite, increased magnetite formation, and elevated incorporation of Mg into the phyllosilicate as it further recrystallized into Mg-greenalite. Our findings demonstrate a possible formation mechanism of early silicates through partial Fe(II) oxidation and support petrographic observations that magnetite likely mineralizes during diagenesis. Additionally, we suggest that Mg contents in BIF iron phyllosilicates could serve as a tracer for diagenesis, with Mg signaling phyllosilicate-fluid interactions at elevated temperatures. Ultimately, our experiments help reveal how initial iron-silica coprecipitates are altered during diagenesis, providing novel insights into the interpretation of greenalite and magnetite in ancient BIF assemblages. 
    more » « less
  3. Abstract Two basalts with compositions relevant to the crusts of Mars and Earth were synthesized at igneous temperatures and held at 650°C for 21 to 257 days under quartz‐fayalite‐magnetitefO2buffer conditions. The run products are germane to slowly cooled igneous intrusions, which might be a significant volumetric fraction of the Martian crust and carriers of magnetic anomalies in the Southern Highlands. Both basalts acquired intense thermoremanent magnetizations and intense but easily demagnetized anhysteretic remanent magnetizations carried by homogeneous multidomain titanomagnetite. Hypothetical intrusions on Mars composed of these materials would be capable of acquiring intense remanences sufficient to generate the observed anomalies. However, the remanence would be easily demagnetized by impact events after the cessation of the Mars geodynamo. Coercivity enhancement by pressure or formation of single domain regions via exsolution within the multidomain grains is necessary for long‐term retention of a remanence carried exclusively by multidomain titanomagnetite grains. 
    more » « less
  4. null (Ed.)
    This report documents the results of X-ray diffraction analyses of 132 mud and mudstone samples collected offshore Sumatra during International Ocean Discovery Program Expedition 362. The clay-size mineral assemblage consists of smectite, illite, chlorite, kaolinite, and quartz. The relative abundance of smectite at Site U1480 decreases downsection from a mean value of 33 wt% in Unit I to a mean of 19 wt% in Unit II; illite increases from a mean of 49 wt% to a mean of 59 wt%. Smectite in Unit III increases to a mean of 73 wt%, and illite decreases to a mean of 19 wt%. Mean values are subordinate (<16 wt%) for undifferentiated chlorite + kaolinite and <7 wt% for quartz in all units. A significant compositional discrepancy occurs between Subunit IIIA at Site U1480 (mean smectite = 64 wt%) and Unit III at Site U1481 (mean smectite = 36 wt%). At Site U1480, the expandability of illite/smectite mixed-layer clays increases downsection, which is opposite to the trend expected with burial diagenesis. The maximum value is 88% within smectite-rich samples from Unit III. Values of the illite crystallinity index are between 0.42Δ°2θ and 0.76Δ°2θ, with most data straddling the generic boundary between advanced diagenesis and anchimetamorphism. Illite (060) reflections yield bo values of 8.988 to 9.000, which are indicative of low phengite contents. Smectite (060) reflections display peak apex positions of 61.998°–61.798°2θ, which are consistent with the mineral structure of montmorillonite. The detrital illite fraction contains 46%–60% 2M1 polytype, and the remainder is 1M/1Md. 
    more » « less
  5. Siliciclastic strata of the Colorado Plateau attract attention for their striking red, green, bleached, and variegated colors that potentially record both early depositional and later diagenetic events. We investigated the proximal-most strata of the Paradox Basin, from their onlap contact with the Precambrian basement of the Uncompahgre Plateau to the younger Cutler strata exposed within 10 km of the Uncompahgre Plateau to attempt to understand the significance of the striking colors that occur here. These strata preserve a complex geology associated with buried paleorelief and sediment-related permeability variations at a major basin-uplift interface. Strata exposed within ∼1.5 km of the onlap contact exhibit a pervasive drab color in contrast to the generally red colors that predominate farther from this front. In-between, strata commonly host variegated red/green/bleached intercalations. Thin-section petrography, SEM, XRD, Raman spectroscopy, Mössbauer spectroscopy, and whole-rock geochemistry of samples representing different color variations from demonstrate that water–rock interactions charged the rocks with Fe(II) that persists primarily in the phyllosilicate fraction. Color variations reflect grain-size differences that allowed the reduction of fluids from regional fault and basement/fill contacts to permeate coarser-grained Cutler sediments. Hematite and chlorite occur in both red and green sediments but are absent in the bleached sediments. Pervasive hematite in both red and green layers suggests that sediments were hematite-rich before later alteration. Chlorite and smectite are elevated in green samples and inversely correlated with biotite content. Green coloration is generally associated with 1) coarser grain sizes, 2) spatial association with basement contacts, 3) elevated smectite and/or chlorite, 4) less total Fe but greater Fe(II)/Fe(III) primarily in the phyllosilicate fraction, and 5) uranium enrichment. The bleached coloration reflects the removal of pigmentary Fe(III) oxide, while the green coloration is due to the removal of pigmentary hematite and the abundance of Fe(II)-bearing phyllosilicates. Abundant mixed-layer and swelling clays such as smectite, illite/smectite, and chlorite/smectite (including tosudite) dominate the mineralogy of the clay fraction. These results are consistent with other studies demonstrating fault-associated fluid alteration in the Paradox Basin region. However, the pervasive greening was not observed in many of these studies and appears to reflect the unique aspects of the paleovalley system and the importance of biotite alteration to Fe(II)-bearing phyllosilicates. 
    more » « less