skip to main content

Title: High-temperature Stability of an Iron-rich Smectite: Implications for Smectite Formation on Mars
Iron-rich phyllosilicates on Mars comprise nearly 90% of the H2O- and OH-bearing phases observed directly by rovers and remotely by orbiters (Chemtob et al., 2017, JGR). Theories concerning the possible origin of Fe-rich smectite during Mars’ earliest history (phyllosian) are hard to test because of limited knowledge of the upper-thermal stability of Fe-rich phyllosilicates. In this study we present data on the upper-thermal stability of a pure-iron smectite to put some minimum constraints on its possible high-temperature origin early in Mars history either from a primordial atmosphere or by hydrothermal activity. Smectite coexisting with quartz and magnetite was synthesized from the oxides in the system Na2O-FeO-Fe2O3-Al2O3-SiO2-H2O at 500°C and 2 kbar and fO2 near FMQ. Reversal experiments involved mixtures with equal portions of the smectite-synthesis and breakdown products (quartz, fayalite, albite, magnetite (mt) treated in the presence of about 10 wt% H2O over the range of 1-3 kbar and 530-640°C. The average composition (electron microprobe) of smectite formed both in synthesis and in reversal experiments was Na0.35(Fe2+2.28Fe3+0.31Al0.41)(Al1.07Si2.93)O10(OH)2·nH2O, where ferric iron was calculated by summing the octahedral cations to 3.0. Reversals for the reaction smec+mt1 = fayalite+albite+mt2+quartz+H2O were obtained at 538±8, 590±10, and 610±10°C at 1, 2, and 3 kbar, respectively, where mt1 and mt2 have the approximate compositions Fe2.8Si0.2O4 and Fe2.8Al0.1O4, respectively, with all other phases being pure. This smectite has up to 2 interlayer H2O at 25°C (and high humidity), losing 1 H2O at <50°C, and the second at 125 ± 25°C. Thermodynamic modeling of this reaction was used to extrapolate the upper-thermal stability of this Fe-smectite down to 10 bars and approximately 239°C. Applications of these results indicate the maximum temperature for forming Fe-smectite from a dense primordial atmosphere of 100 bars is 390 ± 25°C. Crustal storage of water in Fe-smectite ranges up to a maximum of 10.7 wt% at ~2 km and 40°C, 7.4 wt% at 6 km and 120°C, and 3.8 wt% H2O at 32 km and 625°C for a Noachian geotherm of 20°C/km. Plain language summary: This study presents experimental limits on the temperatures at which the clay mineral smectite might form on Mars, either from a dense primordial atmosphere (390°C at 100 bars) or by high-temperature hydrothermal activity (625°C at 32 km). Because this study deals with iron end-member clay, these are minimum temperatures; any solid solution with magnesium will increase these temperatures.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
American Geophysical Union meeting, Fall 2020 Meeting
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Banded iron formations (BIF) are chemically precipitated sediments that can record Archean ocean geochemistry. BIFs are laminated silica- and iron-rich deposits that host a range of iron(II, III) minerals, including hematite, magnetite, siderite, greenalite, minnesotaite, and stilpnomelane. This diverse mineralogical assemblage reflects secondary mineralization reactions due to diagenesis and/or post-depositional alteration. While petrographic observations of BIFs sparingly contain the iron silicate greenalite, recent evidence of greenalite nanoparticles preserved in early-mineralizing BIF chert suggest this mineral was a primary phase in BIF progenitor sediments. Therefore, it is critical to investigate the formation and alteration of greenalite to constrain the Archean ocean environment and help unravel post-depositional processes. To examine how iron silicates precipitate and then crystallize and/or transform during diagenesis, we simulated these two processes under Archean ocean conditions. We first precipitated a poorly ordered Fe-rich serpentine with subsidiary ferrihydrite at neutral pH by performing in situ Fe(II) oxidation experiments at 25 °C in the presence of silica. Subjected to simulated diagenesis at 80 °C, the rudimentary Fe-phyllosilicate transformed into a crystalline phyllosilicate characterized as 30% cronstedtite and 70% greenalite accompanied by magnetite and persistent ferrihydrite. At temperatures ≤150 °C, we continued to observe ferrihydrite, increased magnetite formation, and elevated incorporation of Mg into the phyllosilicate as it further recrystallized into Mg-greenalite. Our findings demonstrate a possible formation mechanism of early silicates through partial Fe(II) oxidation and support petrographic observations that magnetite likely mineralizes during diagenesis. Additionally, we suggest that Mg contents in BIF iron phyllosilicates could serve as a tracer for diagenesis, with Mg signaling phyllosilicate-fluid interactions at elevated temperatures. Ultimately, our experiments help reveal how initial iron-silica coprecipitates are altered during diagenesis, providing novel insights into the interpretation of greenalite and magnetite in ancient BIF assemblages. 
    more » « less
  2. Abstract

    The physical properties of minerals are modified by the high temperatures of volcanic lightning during explosive eruptions. Alteration involves rapid heating and volatilization, melting, and fusion of ash grains within the discharge channel, followed by rapid quenching into new glassy textures. High current impulse experiments reveal that lightning alters not only the morphology and mineralogy of volcanic ash but also its magnetic properties. We investigate lightning‐induced magnetic changes in five igneous minerals (<32 μm powders of albite, labradorite, augite, hornblende, and magnetite) by comparing hysteresis parameters before and after impulse experiments conducted at peak currents of 25 and 40 kA. Both the paramagnetic and ferrimagnetic behaviors of the samples were altered, which we interpret as a superposition of two processes. (a) Rapid melting allows iron contained within inclusions of Fe‐oxides and Fe‐bearing silicates to diffuse into the newly formed melt, thereby increasing the paramagnetism of the resulting glass. (b) Nucleation and growth of magnetite from the newly formed melt increases the ferrimagnetic behavior of the post‐experimental samples. Nominally non‐Fe‐bearing silicates like albite and labradorite have significantly increased paramagnetism and ferrimagnetism. Fe‐bearing silicates like augite and hornblende contain higher concentrations of ferrimagnetic inclusions, from which Fe diffuses into the newly formed melt, thereby increasing paramagnetism while decreasing ferrimagnetism. Experiments conducted on magnetite produced new magnetite crystals with dendritic habits. Although specific to volcanic ash, these results provide important insights into the magnetism of other materials affected by lightning on Earth, the Moon, and throughout the solar system.

    more » « less
  3. null (Ed.)
    This report documents the results of X-ray diffraction analyses of 132 mud and mudstone samples collected offshore Sumatra during International Ocean Discovery Program Expedition 362. The clay-size mineral assemblage consists of smectite, illite, chlorite, kaolinite, and quartz. The relative abundance of smectite at Site U1480 decreases downsection from a mean value of 33 wt% in Unit I to a mean of 19 wt% in Unit II; illite increases from a mean of 49 wt% to a mean of 59 wt%. Smectite in Unit III increases to a mean of 73 wt%, and illite decreases to a mean of 19 wt%. Mean values are subordinate (<16 wt%) for undifferentiated chlorite + kaolinite and <7 wt% for quartz in all units. A significant compositional discrepancy occurs between Subunit IIIA at Site U1480 (mean smectite = 64 wt%) and Unit III at Site U1481 (mean smectite = 36 wt%). At Site U1480, the expandability of illite/smectite mixed-layer clays increases downsection, which is opposite to the trend expected with burial diagenesis. The maximum value is 88% within smectite-rich samples from Unit III. Values of the illite crystallinity index are between 0.42Δ°2θ and 0.76Δ°2θ, with most data straddling the generic boundary between advanced diagenesis and anchimetamorphism. Illite (060) reflections yield bo values of 8.988 to 9.000, which are indicative of low phengite contents. Smectite (060) reflections display peak apex positions of 61.998°–61.798°2θ, which are consistent with the mineral structure of montmorillonite. The detrital illite fraction contains 46%–60% 2M1 polytype, and the remainder is 1M/1Md. 
    more » « less
  4. null (Ed.)
    The frontal accretionary prism of the Hikurangi subduction margin is composed mostly of interbeds of hemipelagic mud and silty turbidites that were deposited on the floor of Hikurangi Trough during the Pleistocene. Expedition 375 of the International Ocean Discovery Program included coring those deposits at Sites U1518 and U1520, which are located on the frontal accretionary prism and the trench wedge, respectively. This report provides the results of 208 X-ray diffraction analyses of the clay-sized fraction (<2 mm spherical settling equivalent). Sampling focused on the background lithology of hemipelagic mud. Normalized weight percent values for common clay-sized minerals (where smectite + illite + undifferentiated [chlorite + kaolinite] + quartz = 100%) exhibit unusual amounts of scatter in all of the lithostratigraphic units. Furthermore, the results reveal neither depth-dependent trends nor excursions at unit boundaries, and compositional differences among sites, lithologic units, and subunits are insignificant. At Site U1520, the mean (µ) and standard deviation (σ) values for Units I–III are smectite = 31.4 wt% (σ = 11.1), illite = 41.5 wt% (σ = 6.9), chlorite + kaolinite = 11.6 wt% (σ = 3.6), and quartz = 15.5 wt% (σ = 6.1). At Site U1518, the mean and standard deviation values for Units I–III are smectite = 38.4 wt% (σ = 9.8), illite = 41.5 wt% (σ = 6.9), chlorite + kaolinite = 11.8 wt% (σ = 4.1), and quartz = 8.3 wt% (σ = 2.3). Indicators of clay diagenesis are relatively monotonous throughout the cored intervals. The average value of the illite crystallinity index is 0.485Δ°2θ (σ = 0.036) at Site U1520 and 0.517Δ°2θ (σ = 0.020) at Site U1518. Smectite expandability averages 70.4% (σ = 7.2) at Site U1520 and 75.2% (σ = 6.0) at Site U1518. At Site U1520, the average proportion of illite in illite/smectite mixed-layer clay is 12.6% (σ = 6.5); the comparable values at Site U1518 are µ = 10.3% and σ = 5.0. 
    more » « less
  5. Sediments deposited on the upper slope of the Hikurangi subduction margin, offshore New Zealand, are composed mostly of hemipelagic mud with interbeds of silt to sand that were modified after deposition by strong bottom currents. Some of those deposits were spot cored at Site U1519 during International Ocean Discovery Program (IODP) Expedition 375. This report provides the results of 76 X-ray diffraction analyses of the clay-sized fraction (<2 µm spherical settling equivalent). Sampling focused on the background lithology of hemipelagic mud. Normalized weight percent values for common clay-sized minerals (where smectite + illite + undifferentiated [chlorite + kaolinite] + quartz = 100%) reveal unusually small amounts of scatter both within and between the two lithostratigraphic units. The mean and standard deviation (σ) values for Unit I are smectite = 44.1 wt% (σ = 3.7), illite = 34.0 wt% (σ = 2.8), undifferentiated (chlorite + kaolinite) = 10.7 wt% (σ = 1.3), and quartz = 11.2 wt% (σ = 2.2). The mean and standard deviation values for Unit II are smectite = 49.9 wt% (σ = 5.5), illite = 31.9 wt% (σ = 4.0), undifferentiated (chlorite + kaolinite) = 5.8 wt% (σ = 1.8), and quartz = 12.3 wt% (σ = 7.4). Large gaps between cored intervals preclude recognition of possible depth-dependent or age-dependent trends, but the values at Site U1519 closely match those at nearby Site U1517 (Tuaheni Landslide Complex). Two major unconformities were interpreted in seismic reflection profiles that cross Site U1519, and compositional differences across those features are trivial. Variations among indicators of clay diagenesis are also relatively small. The average value of the illite crystallinity index is 0.537Δ°2θ (σ = 0.019). The expandability of smectite + illite/smectite mixed-layer clay averages 79% (σ = 3%), and the average proportion of illite in illite/smectite mixed-layer clay is 13% (σ = 6%). 
    more » « less