- Award ID(s):
- 1755268
- Publication Date:
- NSF-PAR ID:
- 10162741
- Journal Name:
- General and comparative endocrinology
- Volume:
- 292
- Page Range or eLocation-ID:
- 113465
- ISSN:
- 0435-2440
- Sponsoring Org:
- National Science Foundation
More Like this
-
INTRODUCTION Balance between excitatory and inhibitory neuron (interneuron) populations in the cortex promotes normal brain function. Interneurons are primarily generated in the medial, caudal, and lateral ganglionic eminences (MGE, CGE, and LGE) of the ventral embryonic forebrain; these subregions give rise to distinct interneuron subpopulations. In rodents, the MGE generates cortical interneurons, the parvalbumin + (PV + ) and somatostatin + (SST + ) subtypes that connect with excitatory neurons to regulate their activity. Defects in interneuron production have been implicated in neurodevelopmental and psychiatric disorders including autism, epilepsy, and schizophrenia. RATIONALE How does the human MGE (hMGE) produce the number of interneurons required to populate the forebrain? The hMGE contains progenitor clusters distinct from what has been observed in the rodent MGE and other germinal zones of the human brain. This cytoarchitecture could be the key to understanding interneuron neurogenesis. We investigated the cellular and molecular properties of different compartments within the developing hMGE, from 14 gestational weeks (GW) to 39 GW (term), to study their contribution to the production of inhibitory interneurons. We developed a xenotransplantation assay to follow the migration and maturation of the human interneurons derived from this germinal region. RESULTS Within the hMGE, densely packedmore »
-
Graham, Lyle J. (Ed.)Neurons exhibit diverse intrinsic dynamics, which govern how they integrate synaptic inputs to produce spikes. Intrinsic dynamics are often plastic during development and learning, but the effects of these changes on stimulus encoding properties are not well known. To examine this relationship, we simulated auditory responses to zebra finch song using a linear-dynamical cascade model, which combines a linear spectrotemporal receptive field with a dynamical, conductance-based neuron model, then used generalized linear models to estimate encoding properties from the resulting spike trains. We focused on the effects of a low-threshold potassium current (K LT ) that is present in a subset of cells in the zebra finch caudal mesopallium and is affected by early auditory experience. We found that K LT affects both spike adaptation and the temporal filtering properties of the receptive field. The direction of the effects depended on the temporal modulation tuning of the linear (input) stage of the cascade model, indicating a strongly nonlinear relationship. These results suggest that small changes in intrinsic dynamics in tandem with differences in synaptic connectivity can have dramatic effects on the tuning of auditory neurons.
-
Abstract The dentate gyrus (DG), a key hippocampal subregion in memory processing, generally resists phosphorylated tau accumulation in the amnestic dementia of the Alzheimer’s type due to Alzheimer’s disease (DAT-AD), but less is known about the susceptibility of the DG to other tauopathies. Here, we report stereologic densities of total DG neurons and tau inclusions in thirty-two brains of human participants with autopsy-confirmed tauopathies with distinct isoform profiles—3R Pick’s disease (PiD, N = 8), 4R corticobasal degeneration (CBD, N = 8), 4R progressive supranuclear palsy (PSP, N = 8), and 3/4R AD (N = 8). All participants were diagnosed during life with primary progressive aphasia (PPA), an aphasic clinical dementia syndrome characterized by progressive deterioration of language abilities with spared non-language cognitive abilities in early stages, except for five patients with DAT-AD as a comparison group. 51% of total participants were female. All specimens were stained immunohistochemically with AT8 to visualize tau pathology, and PPA cases were stained for Nissl substance to visualize neurons. Unbiased stereological analysis was performed in granule and hilar DG cells, and inclusion-to-neuron ratios were calculated. In the PPA group, PiD had highest mean total (granule + hilar) densities of DG tau pathology (
p < 0.001), followed by CBD, AD, then PSP. PPA-AD cases showed more inclusions inmore » -
Abstract Vasoactive intestinal peptide (Vip) regulates luteinizing hormone (LH) release through the direct regulation of gonadotropin-releasing hormone (GnRH) neurons at the level of the brain in female rodents. However, little is known regarding the roles of Vip in teleost reproduction. Although GnRH is critical for fertility through the regulation of LH secretion in vertebrates, the exact role of the hypophysiotropic GnRH (GnRH3) in zebrafish is unclear since GnRH3 null fish are reproductively fertile. This phenomenon raises the possibility of a redundant regulatory pathway(s) for LH secretion in zebrafish. Here, we demonstrate that VipA (homologues of mammalian Vip) both inhibits and induces LH secretion in zebrafish. Despite the observation that VipA axons may reach the pituitary proximal pars distalis including LH cells, pituitary incubation with VipA in vitro, and intraperitoneal injection of VipA, did not induce LH secretion and lhβ mRNA expression in sexually mature females, respectively. On the other hand, intracerebroventricular administration of VipA augmented plasma LH levels in both wild-type and gnrh3-/- females at 1 hour posttreatment, with no observed changes in pituitary GnRH2 and GnRH3 contents and gnrh3 mRNA levels in the brains. While VipA’s manner of inhibition of LH secretion has yet to be explored, the stimulationmore »
-
Intracellular Zn2+ transients modulate global gene expression in dissociated rat hippocampal neurons
Abstract Zinc (Zn2+) is an integral component of many proteins and has been shown to act in a regulatory capacity in different mammalian systems, including as a neurotransmitter in neurons throughout the brain. While Zn2+plays an important role in modulating neuronal potentiation and synaptic plasticity, little is known about the signaling mechanisms of this regulation. In dissociated rat hippocampal neuron cultures, we used fluorescent Zn2+sensors to rigorously define resting Zn2+levels and stimulation-dependent intracellular Zn2+dynamics, and we performed RNA-Seq to characterize Zn2+-dependent transcriptional effects upon stimulation. We found that relatively small changes in cytosolic Zn2+during stimulation altered expression levels of 931 genes, and these Zn2+dynamics induced transcription of many genes implicated in neurite expansion and synaptic growth. Additionally, while we were unable to verify the presence of synaptic Zn2+in these cultures, we did detect the synaptic vesicle Zn2+transporter ZnT3 and found it to be substantially upregulated by cytosolic Zn2+increases. These results provide the first global sequencing-based examination of Zn2+-dependent changes in transcription and identify genes that may mediate Zn2+-dependent processes and functions.