skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Axon arrival times and physical occupancy establish visual projection neuron integration on developing dendrites in the Drosophila optic glomeruli
Behaviorally relevant, higher order representations of an animal’s environment are built from the convergence of visual features encoded in the early stages of visual processing. Although developmental mechanisms that generate feature encoding channels in early visual circuits have been uncovered, relatively little is known about the mechanisms that direct feature convergence to enable appropriate integration into downstream circuits. Here we explore the development of a collision detection sensorimotor circuit in Drosophila melanogaster, the convergence of visual projection neurons (VPNs) onto the dendrites of a large descending neuron, the giant fiber (GF). We find VPNs encoding different visual features establish their respective territories on GF dendrites through sequential axon arrival during development. Physical occupancy, but not developmental activity, is important to maintain territories. Ablation of one VPN results in the expansion of remaining VPN territories and functional compensation that enables the GF to retain responses to ethologically relevant visual stimuli. GF developmental activity, observed using a pupal electrophysiology preparation, appears after VPN territories are established, and likely contributes to later stages of synapse assembly and refinement. Our data highlight temporal mechanisms for visual feature convergence and promote the GF circuit and the Drosophila optic glomeruli, where VPN to GF connectivity resides, as a powerful developmental model for investigating complex wiring programs and developmental plasticity.  more » « less
Award ID(s):
1921065
PAR ID:
10534897
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
eLife
Date Published:
Format(s):
Medium: X
Institution:
Drexel University
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Synapses are often precisely organized on dendritic arbors, yet the role of synaptic topography in dendritic integration remains poorly understood. Utilizing electron microscopy (EM) connectomics we investigate synaptic topography inDrosophila melanogasterlooming circuits, focusing on retinotopically tuned visual projection neurons (VPNs) that synapse onto descending neurons (DNs). Synapses of a given VPN type project to non-overlapping regions on DN dendrites. Within these spatially constrained clusters, synapses are not retinotopically organized, but instead adopt near random distributions. To investigate how this organization strategy impacts DN integration, we developed multicompartment models of DNs fitted to experimental data and using precise EM morphologies and synapse locations. We find that DN dendrite morphologies normalize EPSP amplitudes of individual synaptic inputs and that near random distributions of synapses ensure linear encoding of synapse numbers from individual VPNs. These findings illuminate how synaptic topography influences dendritic integration and suggest that linear encoding of synapse numbers may be a default strategy established through connectivity and passive neuron properties, upon which active properties and plasticity can then tune as needed. 
    more » « less
  2. Spatially invariant feature detection is a property of many visual systems that rely on visual information provided by two eyes. However, how information across both eyes is integrated for invariant feature detection is not fully understood. Here we investigate spatial invariance of looming responses in descending neurons (DNs) of Drosophila melanogaster. We find multiple looming responsive DNs integrate looming information across both eyes, even though their dendrites are restricted to a single visual hemisphere. One DN, the giant fiber (GF), responds invariantly to looming stimuli across tested azimuthal locations. We confirm visual information propagates to the GF from the contralateral eye through an unidentified pathway and demonstrate that the absence of this pathway alters GF responses to looming stimuli presented to the ipsilateral eye. Our data highlight a role for bilateral visual integration in generating consistent, looming-evoked escape responses that are robust across different stimulus locations and parameters. 
    more » « less
  3. null (Ed.)
    To support remote employees, organizations often use virtual private networks (VPNs) to provide confidential and authenticated tunnels between the organization’s networks and the employees’ systems. With widespread end-to-end application layer encryption and authentication, the cryptographic features of VPNs are often redundant. However, many organizations still rely upon VPNs. We examine the motivations and limitations associated with VPNs and find that VPNs are often used to simplify access control and filtering for enterprise services. To avoid limitations associated with VPNs, we propose an approach that allows straightforward filtering. Our approach provides evidence a remote user belongs in a network, despite the address sharing present in tools like Carrier-Grade Network Address Translation. We preserve simple access control and eliminate the need for VPN servers, redundant cryptography, and VPN packet headers overheads. The approach is incrementally deployable and provides a second factor for authenticating users and systems while minimizing performance overheads. 
    more » « less
  4. null (Ed.)
    Neurons undergo substantial morphological and functional changes during development to form precise synaptic connections and acquire specific physiological properties. What are the underlying transcriptomic bases? Here, we obtained the single-cell transcriptomes of Drosophila olfactory projection neurons (PNs) at four developmental stages. We decoded the identity of 21 transcriptomic clusters corresponding to 20 PN types and developed methods to match transcriptomic clusters representing the same PN type across development. We discovered that PN transcriptomes reflect unique biological processes unfolding at each stage—neurite growth and pruning during metamorphosis at an early pupal stage; peaked transcriptomic diversity during olfactory circuit assembly at mid-pupal stages; and neuronal signaling in adults. At early developmental stages, PN types with adjacent birth order share similar transcriptomes. Together, our work reveals principles of cellular diversity during brain development and provides a resource for future studies of neural development in PNs and other neuronal types. 
    more » « less
  5. null (Ed.)
    Recognition of environmental cues is essential for the survival of all organisms. Transcriptional changes occur to enable the generation and function of the neural circuits underlying sensory perception. To gain insight into these changes, we generated single-cell transcriptomes of Drosophila olfactory- (ORNs), thermo-, and hygro-sensory neurons at an early developmental and adult stage using single-cell and single-nucleus RNA sequencing. We discovered that ORNs maintain expression of the same olfactory receptors across development. Using receptor expression and computational approaches, we matched transcriptomic clusters corresponding to anatomically and physiologically defined neuron types across multiple developmental stages. We found that cell-type-specific transcriptomes partly reflected axon trajectory choices in development and sensory modality in adults. We uncovered stage-specific genes that could regulate the wiring and sensory responses of distinct ORN types. Collectively, our data reveal transcriptomic features of sensory neuron biology and provide a resource for future studies of their development and physiology. 
    more » « less