skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Emerging Nonvalence Anion States of [Isoprene-H·]·H 2 O Accessed via Detachment of OH – ·Isoprene
Award ID(s):
1664965 1856775
PAR ID:
10162886
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Journal of Physical Chemistry A
Volume:
124
Issue:
11
ISSN:
1089-5639
Page Range / eLocation ID:
2279 to 2287
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The gas-phase reaction of O + H 3 + has two exothermic product channels: OH + + H 2 and H 2 O + + H. In the present study, we analyze experimental data from a merged-beams measurement to derive thermal rate coefficients resolved by product channel for the temperature range from 10 to 1000 K. Published astrochemical models either ignore the second product channel or apply a temperature-independent branching ratio of 70% versus 30% for the formation of OH + + H 2 versus H 2 O + + H, respectively, which originates from a single experimental data point measured at 295 K. Our results are consistent with this data point, but show a branching ratio that varies with temperature reaching 58% versus 42% at 10 K. We provide recommended rate coefficients for the two product channels for two cases, one where the initial fine-structure population of the O( 3 P J ) reactant is in its J = 2 ground state and the other one where it is in thermal equilibrium. 
    more » « less
  2. Abstract We present state-selective measurements on the N H 2 + + H + and NH + + H + + H dissociation channels following single-photon double ionization at 61.5 eV of neutral NH 3 , where the two photoelectrons and two cations are measured in coincidence using 3D momentum imaging. Three dication electronic states are identified to contribute to the N H 2 + + H + dissociation channel, where the excitation in one of the three states undergoes intersystem crossing prior to dissociation, producing a cold N H 2 + fragment. In contrast, the other two states directly dissociate, producing a ro-vibrationally excited N H 2 + fragment with roughly 1 eV of internal energy. The NH + + H + + H channel is fed by direct dissociation from three intermediate dication states, one of which is shared with the N H 2 + + H + channel. We find evidence of autoionization contributing to each of the double ionization channels. The distributions of the relative emission angle between the two photoelectrons, as well as the relative angle between the recoil axis of the molecular breakup and the polarization vector of the ionizing field, are also presented to provide insight on both the photoionization and photodissociation mechanisms for the different dication states. 
    more » « less
  3. We report absolute integral cross section (ICS) measurements using a dual-source merged-fast-beams apparatus to study the titular reactions over the relative translational energy range of E r ∼ 0.01–10 eV. We used photodetachment of C − to produce a pure beam of atomic C in the ground electronic 3 P term, with statistically populated fine-structure levels. The H 2 + and D 2 + were formed in an electron impact ionization source, with well known vibrational and rotational distributions. The experimental work is complemented by a theoretical study of the CH 2 + electronic system in the reactant and product channels, which helps to clarify the possible reaction mechanisms underlying the ICS measurements. Our measurements provide evidence that the reactions are barrierless and exoergic. They also indicate the apparent absence of an intermolecular isotope effect, to within the total experimental uncertainties. Capture models, taking into account either the charge-induced dipole interaction potential or the combined charge-quadrupole and charge-induced dipole interaction potentials, produce reaction cross sections that lie a factor of ∼4 above the experimental results. Based on our theoretical study, we hypothesize that the reaction is most likely to proceed adiabatically through the 1 4 A′ and 1 4 A′′ states of CH 2 + via the reaction C( 3 P) + H 2 + ( 2 Σ+g) → CH + ( 3 Π) + H( 2 S). We also hypothesize that at low collision energies only H 2 + ( v ≤ 2) and D 2 + ( v ≤ 3) contribute to the titular reactions, due to the onset of dissociative charge transfer for higher vibrational v levels. Incorporating these assumptions into the capture models brings them into better agreement with the experimental results. Still, for energies ≲0.1 eV where capture models are most relevant, the modified charge-induced dipole model yields reaction cross sections with an incorrect energy dependence and lying ∼10% below the experimental results. The capture cross section obtained from the combined charge-quadrupole and charge-induced dipole model better matches the measured energy dependence but lies ∼30–50% above the experimental results. These findings provide important guidance for future quasiclassical trajectory and quantum mechanical treatments of this reaction. 
    more » « less
  4. null (Ed.)