skip to main content

Title: The evolution of kicked stellar-mass black holes in star cluster environments - II. Rotating star clusters
Abstract In this paper, we continue our study on the evolution of black holes (BHs) that receive velocity kicks at the origin of their host star cluster potential. We now focus on BHs in rotating clusters that receive a range of kick velocities in different directions with respect to the rotation axis. We perform N-body simulations to calculate the trajectories of the kicked BHs and develop an analytic framework to study their motion as a function of the host cluster and the kick itself. Our simulations indicate that for a BH that is kicked outside of the cluster’s core, as its orbit decays in a rotating cluster the BH will quickly gain angular momentum as it interacts with stars with high rotational frequencies. Once the BH decays to the point where its orbital frequency equals that of local stars, its orbit will be circular and dynamical friction becomes ineffective since local stars will have low relative velocities. After circularization, the BH’s orbit decays on a longer time-scale than if the host cluster was not rotating. Hence BHs in rotating clusters will have longer orbital decay times. The time-scale for orbit circularization depends strongly on the cluster’s rotation rate and the more » initial kick velocity, with kicked BHs in slowly rotating clusters being able to decay into the core before circularization occurs. The implication of the circularization phase is that the probability of a BH undergoing a tidal capture event increases, possibly aiding in the formation of binaries and high-mass BHs. « less
; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
3055 to 3066
Sponsoring Org:
National Science Foundation
More Like this

    During the core collapse of massive stars that do not undergo a canonical energetic explosion, some of the hydrogen envelope of a red supergiant (RSG) progenitor may infall on to the newborn black hole (BH). Within the athena++ framework, we perform 3D, hydrodynamical simulations of idealized models of supergiant convection and collapse in order to assess whether the infall of the convective envelope can give rise to rotationally supported material, even if the star has zero angular momentum overall. Our dimension-less, polytropic models are applicable to the optically thick hydrogen envelope of non-rotating RSGs and cover a factor of 20 in stellar radius. At all radii, the specific angular momentum due to random convective flows implies associated circularization radii of 10–1500 times the innermost stable circular orbit of the BH. During collapse, the angular momentum vector of the convective flows is approximately conserved and is slowly varying on the time-scale relevant to forming discs at small radii. Our results indicate that otherwise failed explosions of RSGs lead to the formation of rotationally supported flows that are capable of driving outflows to large radii and powering observable transients. When the BH is able to accrete most of the hydrogen envelope, the finalmore »BH spin parameter is ∼ 0.5, even though the star is non-rotating. For fractional accretion of the envelope, the spin parameter is generally lower and never exceeds 0.8. We discuss the implications of our results for transients produced by RSG collapse to a black hole.

    « less
  2. Abstract Current theoretical models predict a mass gap with a dearth of stellar black holes (BHs) between roughly 50 M ⊙ and 100 M ⊙ , while above the range accessible through massive star evolution, intermediate-mass BHs (IMBHs) still remain elusive. Repeated mergers of binary BHs, detectable via gravitational-wave emission with the current LIGO/Virgo/Kagra interferometers and future detectors such as LISA or the Einstein Telescope, can form both mass-gap BHs and IMBHs. Here we explore the possibility that mass-gap BHs and IMBHs are born as a result of successive BH mergers in dense star clusters. In particular, nuclear star clusters at the centers of galaxies have deep enough potential wells to retain most of the BH merger products after they receive significant recoil kicks due to anisotropic emission of gravitational radiation. Using for the first time simulations that include full stellar evolution, we show that a massive stellar BH seed can easily grow to ∼10 3 –10 4 M ⊙ as a result of repeated mergers with other smaller BHs. We find that lowering the cluster metallicity leads to larger final BH masses. We also show that the growing BH spin tends to decrease in magnitude with the number ofmore »mergers so that a negative correlation exists between the final mass and spin of the resulting IMBHs. Assumptions about the birth spins of stellar BHs affect our results significantly, with low birth spins leading to the production of a larger population of massive BHs.« less
  3. Abstract

    We use very long baseline interferometry to measure the proper motions of three black hole X-ray binaries (BHXBs). Using these results together with data from the literature and Gaia DR2 to collate the best available constraints on proper motion, parallax, distance, and systemic radial velocity of 16 BHXBs, we determined their three-dimensional Galactocentric orbits. We extended this analysis to estimate the probability distribution for the potential kick velocity (PKV) a BHXB system could have received on formation. Constraining the kicks imparted to BHXBs provides insight into the birth mechanism of black holes (BHs). Kicks also have a significant effect on BH–BH merger rates, merger sites, and binary evolution, and can be responsible for spin–orbit misalignment in BH binary systems. 75 per cent of our systems have potential kicks $\gt 70\, \rm {km\,s^{-1}}$. This suggests that strong kicks and hence spin–orbit misalignment might be common among BHXBs, in agreement with the observed quasi-periodic X-ray variability in their power density spectra. We used a Bayesian hierarchical methodology to analyse the PKV distribution of the BHXB population, and suggest that a unimodal Gaussian model with a mean of 107 $\pm \,\,16\, \rm {km\,s^{-1}}$ is a statistically favourable fit. Such relatively high PKVs would alsomore »reduce the number of BHs likely to be retained in globular clusters. We found no significant correlation between the BH mass and PKV, suggesting a lack of correlation between BH mass and the BH birth mechanism. Our python code allows the estimation of the PKV for any system with sufficient observational constraints.

    « less
  4. ABSTRACT In dense star clusters, such as globular and open clusters, dynamical interactions between stars and black holes (BHs) can be extremely frequent, leading to various astrophysical transients. Close encounters between a star and a stellar mass BH make it possible for the star to be tidally disrupted by the BH. Due to the relative low mass of the BH and the small cross-section of the tidal disruption event (TDE) for cases with high penetration, disruptions caused by close encounters are usually partial disruptions. The existence of the remnant stellar core and its non-negligible mass compared to the stellar mass BH alters the accretion process significantly. We study this problem with SPH simulations using the code Phantom, with the inclusion of radiation pressure, which is important for small mass BHs. Additionally, we develop a new, more general method of computing the fallback rate which does not rely on any approximation. Our study shows that the powerlaw slope of the fallback rate has a strong dependence on the mass of the BH in the stellar mass BH regime. Furthermore, in this regime, self-gravity of the fallback stream and local instabilities become more significant, and cause the disrupted material to collapse intomore »small clumps before returning to the BH. This results in an abrupt increase of the fallback rate, which can significantly deviate from a powerlaw. Our results will help in the identification of TDEs by stellar mass BHs in dense clusters.« less
  5. Abstract Close encounters between neutron stars and main-sequence stars occur in globular clusters and may lead to various outcomes. Here we study encounters resulting in the tidal disruption of the star. Using N -body models, we predict the typical stellar masses in these disruptions and the dependence of the event rate on the host cluster properties. We find that tidal disruption events occur most frequently in core-collapsed globular clusters and that roughly 25% of the disrupted stars are merger products (i.e., blue straggler stars). Using hydrodynamic simulations, we model the tidal disruptions themselves (over timescales of days) to determine the mass bound to the neutron star and the properties of the accretion disks formed. In general, we find roughly 80%–90% of the initial stellar mass becomes bound to the neutron star following disruption. Additionally, we find that neutron stars receive impulsive kicks of up to about 20 km s −1 as a result of the asymmetry of unbound ejecta; these kicks place these neutron stars on elongated orbits within their host cluster, with apocenter distances well outside the cluster core. Finally, we model the evolution of the (hypercritical) accretion disks on longer timescales (days to years after disruption) to estimatemore »the accretion rate onto the neutron stars and accompanying spin-up. As long as ≳1% of the bound mass accretes onto the neutron star, millisecond spin periods can be attained. We argue the growing numbers of isolated millisecond pulsars observed in globular clusters may have formed, at least in part, through this mechanism. In the case of significant mass growth, some of these neutron stars may collapse to form low-mass (≲3 M ⊙ ) black holes.« less