Abstract The Milky Way Bulge extra-tidal star survey is a spectroscopic survey with the goal of identifying stripped globular cluster stars from inner Galaxy clusters. In this way, an indication of the fraction of metal-poor bulge stars that originated from globular clusters can be determined. We observed and analyzed stars in and around BH 261, an understudied globular cluster in the bulge. From seven giants within the tidal radius of the cluster, we measured an average heliocentric radial velocity of 〈RV〉 = −61 ± 2.6 km s−1with a radial velocity dispersion of 〈σ〉 = 6.1 ± 1.9 km s−1. The large velocity dispersion may have arisen from tidal heating in the cluster’s orbit about the Galactic center, or because BH 261 has a high dynamical mass as well as a high mass-to-light ratio. From spectra of five giants, we measure an average metallicity of 〈[Fe/H]〉 = −1.1 ± 0.2 dex. We also spectroscopically confirm an RR Lyrae star in BH 261, which yields a distance to the cluster of 7.1 ± 0.4 kpc. Stars with 3D velocities and metallicities consistent with BH 261 reaching to ∼0.°5 from the cluster are identified. A handful of these stars are also consistent with the spatial distribution of potential debris from models focusing on the most recent disruption of the cluster.
more »
« less
The evolution of kicked stellar-mass black holes in star cluster environments - II. Rotating star clusters
Abstract In this paper, we continue our study on the evolution of black holes (BHs) that receive velocity kicks at the origin of their host star cluster potential. We now focus on BHs in rotating clusters that receive a range of kick velocities in different directions with respect to the rotation axis. We perform N-body simulations to calculate the trajectories of the kicked BHs and develop an analytic framework to study their motion as a function of the host cluster and the kick itself. Our simulations indicate that for a BH that is kicked outside of the cluster’s core, as its orbit decays in a rotating cluster the BH will quickly gain angular momentum as it interacts with stars with high rotational frequencies. Once the BH decays to the point where its orbital frequency equals that of local stars, its orbit will be circular and dynamical friction becomes ineffective since local stars will have low relative velocities. After circularization, the BH’s orbit decays on a longer time-scale than if the host cluster was not rotating. Hence BHs in rotating clusters will have longer orbital decay times. The time-scale for orbit circularization depends strongly on the cluster’s rotation rate and the initial kick velocity, with kicked BHs in slowly rotating clusters being able to decay into the core before circularization occurs. The implication of the circularization phase is that the probability of a BH undergoing a tidal capture event increases, possibly aiding in the formation of binaries and high-mass BHs.
more »
« less
- Award ID(s):
- 1831412
- PAR ID:
- 10162970
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 488
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 3055 to 3066
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT It has been argued that heavy binaries composed of neutron stars (NSs) and millisecond pulsars (MSPs) can end up in the outskirts of star clusters via an interaction with a massive black hole (BH) binary expelling them from the core. We argue here, however, that this mechanism will rarely account for such observed objects. Only for primary masses ≲100 M⊙ and a narrow range of orbital separations should a BH–BH binary be both dynamically hard and produce a sufficiently low recoil velocity to retain the NS binary in the cluster. Hence, BH binaries are in general likely to eject NSs from clusters. We explore several alternative mechanisms that would cause NS/MSP binaries to be observed in the outskirts of their host clusters after a Hubble time. The most likely mechanism is a three-body interaction involving the NS/MSP binary and a normal star. We compare to Monte Carlo simulations of cluster evolution for the globular clusters NGC 6752 and 47 Tuc, and show that the models not only confirm that normal three-body interactions involving all stellar-mass objects are the dominant mechanism for putting NS/MSP binaries into the cluster outskirts, but also reproduce the observed NS/MSP binary radial distributions without needing to invoke the presence of a massive BH binary. Higher central densities and an episode of core collapse can broaden the radial distributions of NSs/MSPs and NS/MSP binaries due to three-body interactions, making these clusters more likely to host NSs in the cluster outskirts.more » « less
-
Abstract Most galaxies, including the Milky Way, harbor a central supermassive black hole (SMBH) weighing millions to billions of solar masses. Surrounding these SMBHs are dense regions of stars and stellar remnants, such as neutron stars (NSs) and black holes (BHs). NSs and possibly BHs receive large natal kicks at birth on the order of hundreds of kilometers per second. The natal kicks that occur in the vicinity of an SMBH may redistribute the orbital configuration of the compact objects and alter their underlying density distribution. We model the effects of natal kicks on a Galactic center (GC) population of massive stars and stellar binaries with different initial density distributions. Using observational constraints from stellar orbits near the GC, we place an upper limit on the steepness of the initial stellar profile and find it to be core-like. In addition, we predict that 30%–70% of compact objects become unbound from the SMBH due to their kicks and will migrate throughout the Galaxy. Different BH kick prescriptions lead to distinct spatial and kinematic distributions. We suggest that the Nancy Grace Roman Space Telescope may be able to distinguish between these distributions and thus be able to differentiate between natal kick mechanisms.more » « less
-
Aims.The scenario of feedback-free starbursts (FFB), which predicts excessively bright galaxies at cosmic dawn as observed using JWST, may provide a natural setting for black hole (BH) growth. This involves the formation of intermediate-mass seed BHs and their runaway mergers into super-massive BHs with high BH-to-stellar mass ratios and low Active Galactic Nucleus (AGN) luminosities. Methods.We present a scenario of merger-driven BH growth in FFB galaxies and study its feasibility. Results.Black hole seeds form within the building blocks of the FFB galaxies, namely, thousands of compact star clusters, each starbursting in a free-fall time of a few million years before the onset of stellar and supernova feedback. The BH seeds form by rapid core collapse in the FFB clusters, in a few free-fall times, which is sped up by the migration of massive stars due to the young, broad stellar mass function and stimulated by a “gravo-gyro” instability due to internal cluster rotation and flattening. BHs of ∼104 M⊙are expected in ∼106 M⊙FFB clusters within sub-kiloparsec galactic disks atz ∼ 10. The BHs then migrate to the galaxy center by dynamical friction, hastened by the compact FFB stellar galactic disk configuration. Efficient mergers of the BH seeds will produce ∼106 − 8 M⊙BHs with a BH-to-stellar mass ratio ∼0.01 byz ∼ 4 − 7, as observed. The growth of the central BH by mergers can overcome the bottleneck introduced by gravitational wave recoils if the BHs inspiral within a relatively cold disk or if the escape velocity from the galaxy is boosted by a wet compaction event. Such events, common in massive galaxies at high redshifts, can also help by speeding up the inward BH migration and by providing central gas to assist with the final parsec problem. Conclusions.The cold disk version of the FFB scenario provides a feasible route for the formation of supermassive BHs.more » « less
-
Context. Gravitational waves from black-hole (BH) merging events have revealed a population of extra-galactic BHs residing in short-period binaries with masses that are higher than expected based on most stellar evolution models - and also higher than known stellar-origin black holes in our Galaxy. It has been proposed that those high-mass BHs are the remnants of massive metal-poor stars. Aims: Gaia astrometry is expected to uncover many Galactic wide-binary systems containing dormant BHs, which may not have been detected before. The study of this population will provide new information on the BH-mass distribution in binaries and shed light on their formation mechanisms and progenitors. Methods: As part of the validation efforts in preparation for the fourth Gaia data release (DR4), we analysed the preliminary astrometric binary solutions, obtained by the Gaia Non-Single Star pipeline, to verify their significance and to minimise false-detection rates in high-mass-function orbital solutions. Results: The astrometric binary solution of one source, Gaia BH3, implies the presence of a 32.70 ± 0.82 M⊙ BH in a binary system with a period of 11.6 yr. Gaia radial velocities independently validate the astrometric orbit. Broad-band photometric and spectroscopic data show that the visible component is an old, very metal-poor giant of the Galactic halo, at a distance of 590 pc. Conclusions: The BH in the Gaia BH3 system is more massive than any other Galactic stellar-origin BH known thus far. The low metallicity of the star companion supports the scenario that metal-poor massive stars are progenitors of the high-mass BHs detected by gravitational-wave telescopes. The Galactic orbit of the system and its metallicity indicate that it might belong to the Sequoia halo substructure. Alternatively, and more plausibly, it could belong to the ED-2 stream, which likely originated from a globular cluster that had been disrupted by the Milky Way. Full Table B.1 and Table B.2 with Gaia epoch data are available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (ftp://130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/686/L2more » « less
An official website of the United States government

