skip to main content


This content will become publicly available on June 1, 2025

Title: Discovery of a dormant 33 solar-mass black hole in pre-release Gaia astrometry
Context. Gravitational waves from black-hole (BH) merging events have revealed a population of extra-galactic BHs residing in short-period binaries with masses that are higher than expected based on most stellar evolution models - and also higher than known stellar-origin black holes in our Galaxy. It has been proposed that those high-mass BHs are the remnants of massive metal-poor stars. Aims: Gaia astrometry is expected to uncover many Galactic wide-binary systems containing dormant BHs, which may not have been detected before. The study of this population will provide new information on the BH-mass distribution in binaries and shed light on their formation mechanisms and progenitors. Methods: As part of the validation efforts in preparation for the fourth Gaia data release (DR4), we analysed the preliminary astrometric binary solutions, obtained by the Gaia Non-Single Star pipeline, to verify their significance and to minimise false-detection rates in high-mass-function orbital solutions. Results: The astrometric binary solution of one source, Gaia BH3, implies the presence of a 32.70 ± 0.82 M⊙ BH in a binary system with a period of 11.6 yr. Gaia radial velocities independently validate the astrometric orbit. Broad-band photometric and spectroscopic data show that the visible component is an old, very metal-poor giant of the Galactic halo, at a distance of 590 pc. Conclusions: The BH in the Gaia BH3 system is more massive than any other Galactic stellar-origin BH known thus far. The low metallicity of the star companion supports the scenario that metal-poor massive stars are progenitors of the high-mass BHs detected by gravitational-wave telescopes. The Galactic orbit of the system and its metallicity indicate that it might belong to the Sequoia halo substructure. Alternatively, and more plausibly, it could belong to the ED-2 stream, which likely originated from a globular cluster that had been disrupted by the Milky Way. Full Table B.1 and Table B.2 with Gaia epoch data are available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (ftp://130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/686/L2  more » « less
Award ID(s):
2206828
NSF-PAR ID:
10535438
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
EDP Sciences
Date Published:
Journal Name:
Astronomy and astrophysics
ISSN:
1067-8603
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Milky Way is believed to host hundreds of millions of quiescent stellar-mass black holes (BHs). In the last decade, some of these objects have been potentially uncovered via gravitational microlensing events. All these detections resulted in a degeneracy between the velocity and the mass of the lens. This degeneracy has been lifted, for the first time, with the recent astrometric microlensing detection of OB110462. However, two independent studies reported very different lens masses for this event. Sahu et al. inferred a lens mass of 7.1 ± 1.3M, consistent with a BH, while Lam et al. inferred 1.6–4.2M, consistent with either a neutron star or a BH. Here, we study the landscape of isolated BHs formed in the field. In particular, we focus on the mass and center-of-mass speed of four subpopulations: isolated BHs from single-star origin, disrupted BHs of binary-star origin, main-sequence stars with a compact object companion, and double compact object mergers. Our model predicts that most (≳70%) isolated BHs in the Milky Way are of binary origin. However, noninteractions lead to most massive BHs (≳15–20M) being predominantly of single origin. Under the assumption that OB110462 is a free-floating compact object, we conclude that it is more likely to be a BH originally belonging to a binary system. Our results suggest that low-mass BH microlensing events can be useful to understand binary evolution of massive stars in the Milky Way, while high-mass BH lenses can be useful to probe single stellar evolution.

     
    more » « less
  2. Abstract We have developed a chemodynamical approach to assign 36,010 metal-poor SkyMapper stars to various Galactic stellar populations. Using two independent techniques (velocity and action space behavior), Gaia EDR3 astrometry, and photometric metallicities, we selected stars with the characteristics of the “metal-weak” thick-disk population by minimizing contamination by the canonical thick disk or other Galactic structures. This sample comprises 7127 stars, spans a metallicity range of −3.50 < [Fe/H] < −0.8, and has a systematic rotational velocity of 〈 V ϕ 〉 = 154 km s −1 that lags that of the thick disk. Orbital eccentricities have intermediate values between typical thick-disk and halo values. The scale length is h R = 2.48 − 0.05 + 0.05 kpc, and the scale height is h Z = 1.68 − 0.15 + 0.19 kpc. The metallicity distribution function is well fit by an exponential with a slope of Δ log N / Δ [ Fe / H ] = 1.13 ± 0.06 . Overall, we find a significant metal-poor component consisting of 261 SkyMapper stars with [Fe/H] < −2.0. While our sample contains only 11 stars with [Fe/H] ≲ −3.0, investigating the JINAbase compilation of metal-poor stars reveals another 18 such stars (five have [Fe/H] < −4.0) that kinematically belong to our sample. These distinct spatial, kinematic, and chemical characteristics strongly suggest that this metal-poor, phase-mixed kinematic sample represents an independent disk component with an accretion origin in which a massive dwarf galaxy radially plunged into the early Galactic disk. Going forward, we propose to call the metal-weak thick-disk population the Atari disk, given its likely accretion origin, and in reference to it sharing space with the Galactic thin and thick disks. 
    more » « less
  3. null (Ed.)
    ABSTRACT The presence of massive black holes (BHs) with masses of the order of $10^9\, {\rm M_\odot }$, powering bright quasars when the Universe was less than 1 Gyr old, poses strong constraints on their formation mechanism. Several scenarios have been proposed to date to explain massive BH formation, from the low-mass seed BH remnants of the first generation of stars to the massive seed BHs resulting from the rapid collapse of massive gas clouds. However, the plausibility of some of these scenarios to occur within the progenitors of high-z quasars has not yet been thoroughly explored. In this work, we investigate, by combining dark-matter only N-body simulations with a semi-analytic framework, whether the conditions for the formation of massive seed BHs from synchronized atomic-cooling halo pairs and/or dynamically heated (DH) mini-haloes are fulfilled in the overdense regions where the progenitors of a typical high-redshift quasar host form and evolve. Our analysis shows that the peculiar conditions in such regions, i.e. strong halo clustering and high star formation rates, are crucial to produce a non-negligible number of massive seed BH host candidates: we find ≈1400 DH metal-free mini-haloes, including one of these which evolves to a synchronized pair and ends up in the massive quasar-host halo by z = 6. This demonstrates that the progenitors of high-redshift quasar host haloes can harbour early massive seed BHs. Our results further suggest that multiple massive seed BHs may form in or near the quasar host’s progenitors, potentially merging at lower redshifts and yielding gravitational wave events. 
    more » « less
  4. Abstract

    Observations have shown that the majority of massive stars, the progenitors of black holes (BHs), have on average more than one stellar companion. In triple systems, wide inner binaries can be driven to a merger by a third body due to long-term secular interactions, most notably by the eccentric Lidov–Kozai effect. In this study, we explore the properties of BH mergers in triple systems and compare their population properties to those of binaries produced in isolation and assembled in dense star clusters. Using the same stellar physics and identical assumptions for the initial populations of binaries and triples, we show that stellar triples yield a significantly flatter mass ratio distribution fromq= 1 down toq∼ 0.3 than either binary stars or dense stellar clusters, similar to the population properties inferred from the most recent catalog of gravitational-wave events, though we do not claim that all the observed events can be accounted for with triples. While hierarchical mergers in clusters can also produce asymmetric mass ratios, the unique spins of such mergers can be used to distinguish them from those produced from stellar triples. All three channels occupy distinct regions in the total mass–mass ratio space, which may allow them to be disentangled as more BH mergers are detected by LIGO, Virgo, and KAGRA.

     
    more » « less
  5. Abstract

    The gravitational pull of an unseen companion to a luminous star is well known to cause deviations to the parallax and proper motion of a star. In a previous paper in this series, we argue that the astrometric mission Gaia can identify long-period binaries by precisely measuring these arcs. An arc in a star’s path can also be caused by a flyby: a hyperbolic encounter with another massive object. We quantify the apparent acceleration over time induced by a companion star as a function of the impact parameter, velocity of interaction, and companion mass. In principle, Gaia could be used to astrometrically identify the contribution of massive compact halo objects to the local dark matter potential of the Milky Way. However, after quantifying their rate and Gaia’s sensitivity, we find that flybys are so rare that Gaia will probably never observe one. Therefore, every star in the Gaia database exhibiting astrometric acceleration is likely in a long-period binary with another object. Nevertheless, we show how intermediate-mass black holes, if they exist in the local stellar neighborhood, can induce anomalously large accelerations on stars.

     
    more » « less