skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Atrazine Removal from Municipal Wastewater Using a Membrane Bioreactor
As the demand for potable water increases, direct potable reuse of wastewater is an attractive alternative method to produce potable water. However, implementation of such a process will require the removal of emerging contaminants which could accumulate in the drinking water supply. Here, the removal of atrazine, a commonly used herbicide, has been investigated. Using real and synthetic wastewater, as well as sludge from two wastewater treatment facilities in the United States in Norman, Oklahoma and Fayetteville, Arkansas, atrazine removal has been investigated. Our results indicate that about 20% of the atrazine is removed by adsorption onto the particulate matter present. Significant biodegradation of atrazine was only observed under aerobic conditions for sludge from Norman, Oklahoma. Next-generation sequencing of the activated sludge revealed the abundance of Noncardiac with known atrazine degradation pathways in the Norman aerobic sludge, which is believed to be responsible for atrazine biodegradation in our study. The detection of these bacteria could also be used to determine the likelihood of biodegradation of atrazine for a given wastewater treatment facility.  more » « less
Award ID(s):
1822101
PAR ID:
10163266
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
International Journal of Environmental Research and Public Health
Volume:
17
Issue:
7
ISSN:
1660-4601
Page Range / eLocation ID:
2567
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Direct potable reuse of wastewater is attractive as the demand for potable water increases. However, the presence of organic micropollutants in industrial and domestic wastewater is a major health and environmental concern. Conventional wastewater treatment processes are not designed to remove these compounds. Further many of these emerging pollutants are not regulated. Membrane bioreactor based biological wastewater treatment has recently become a preferred method for treating municipal and other industrial wastewaters. Here the removal of five selected micropollutants representing different classes of emerging micropollutants has been investigated using a membrane bioreactor. Acetaminophen, amoxicillin, atrazine, estrone, and triclosan were spiked into wastewaters obtained from a local wastewater treatment facility prior to introduction to the membrane bioreactor containing both anoxic and aerobic tanks. Removal of these compounds by adsorption and biological degradation was determined for both the anoxic and aerobic processes. The removal as a function of operating time was investigated. The results obtained here suggest that removal may be related to the chemical structure of the micropollutants. 
    more » « less
  2. Abstract Activated sludge is the centerpiece of biological wastewater treatment, as it facilitates removal of sewage-associated pollutants, fecal bacteria, and pathogens from wastewater through semi-controlled microbial ecology. It has been hypothesized that horizontal gene transfer facilitates the spread of antibiotic resistance genes within the wastewater treatment plant, in part because of the presence of residual antibiotics in sewage. However, there has been surprisingly little evidence to suggest that sewage-associated antibiotics select for resistance at wastewater treatment plants via horizontal gene transfer or otherwise. We addressed the role of sewage-associated antibiotics in promoting antibiotic resistance using lab-scale sequencing batch reactors fed field-collected wastewater, metagenomic sequencing, and our recently developed bioinformatic tool Kairos. Here, we found confirmatory evidence that fluctuating levels of antibiotics in sewage are associated with horizontal gene transfer of antibiotic resistance genes, microbial ecology, and microdiversity-level differences in resistance gene fate in activated sludge. 
    more » « less
  3. Purple phototrophic bacteria and microbial electrochemical technologies: A new biorefinery concept for wastewater treatmentThe shift towards sustainable wastewater treatment focuses on nutrient recovery through biorefineries, highlighting the importance of microalgae, cyanobacteria, and, more recently, purple phototrophic bacteria for their metabolic flexibility and adaptability. Activated sludge has been the primary strategy for wastewater treatment worldwide for the last century. The efficiency of this process has improved the quality of life and reduced the impact of wastewater on the ecosystem by preventing eutrophication processes. However, given the energetic demand for wastewater treatment, the strategy is now shifting towards nutrient recovery from wastewater instead of pollutant removal (Verstraete et al., 2009). 
    more » « less
  4. Soklida, Hong; Mari-KH, Winkler; Zhiwu, Wang; Goel, Ramesh (Ed.)
    This research studied integrated fixed film activated sludge (IFAS) technology to simultaneously remove N and P in real municipal wastewater by combining anammox biofilms with flocculent activated sludge for enhanced biological P removal (EBPR). The study was conducted in a sequencing batch reactor (SBR) operated as a conventional A2O (anaerobic-anoxic-oxic) process with an 8.8 h hydraulic retention time. After achieving steady-state operation, the reactor showed robust performance, with average removal efficiencies of 91.3±4.1% for total inorganic nitrogen (TIN) and 98.4±2.4% for phosphorus (P). Denitrifying polyphosphate accumulating organisms (DPAOs) were responsible for 15.9% of P uptake during the anoxic phase, while biofilms showed anammox activity in the aerobic step. The IFAS configuration with a low solid retention time (SRT) of 5 days prevented the washout of biofilm anammox bacteria and allowed selective washout of unwanted organisms. The results demonstrated the successful coexistence of anammox bacteria with other bacteria for efficient nutrient removal in real wastewater conditions. 
    more » « less
  5. Current wastewater treatment processes such as activated sludge process and other aeration technologies are resourceconsuming and are unsustainable. Novel and integrated processes are crucial to the development of sustainable wastewater treatment systems. In this context, anaerobic treatment technologies provide numerous opportunities for minimization of energy and resource consumption and maximization of beneficial products. Further, integration of anaerobic digestion augmented by co-digestion, fermentation, dark fermentation or photo-fermentation and other bioelectrochemical systems may result in resource-efficient waste management and environmental protection. This mini-review discusses various possibilities and highlights recent developments of integrated aerobic and anaerobic technologies with bioelectrochemical systems for sustainable wastewater treatment. 
    more » « less