Abstract. The loss of radiogenic Pb from zircon is known to be a major factor that can cause inaccuracy in the U–Pb geochronological system; hence, there is a need to better characterize the distribution of Pb loss in natural samples. Treatment of zircon by chemical abrasion (CA) has become standard practice in isotope dilution–thermal ionization mass spectrometry (ID-TIMS), but CA is much less commonly employed prior to in situ analysis via laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) or secondary ionization mass spectrometry (SIMS). Differentiating the effects of low levels of Pb loss in Phanerozoic zircon with relatively low-precision in situ U–Pb dates, where the degree of Pb loss is insufficient to cause discernible discordance, is challenging. We show that U–Pb isotopic ratios that have been perturbed by Pb loss may be modeled by convolving a Gaussian distribution that represents random variations from the true isotopic value stemming from analytical uncertainty with a distribution that characterizes Pb loss. We apply this mathematical framework to model the distribution of apparent Pb loss in 10 igneous samples that have both non-CA LA-ICP-MS or SIMS U–Pb dates and an estimate of the crystallization age, either through CA U–Pb or 40Ar/39Ar geochronology. All but one sample showed negative age offsets that were unlikely to have been drawn from an unperturbed U–Pb date distribution. Modeling apparent Pb loss using the logit–normal distribution produced good fits with all 10 samples and showed two contrasting patterns in apparent Pb loss; samples where most zircon U–Pb dates undergo a bulk shift and samples where most zircon U–Pb dates exhibited a low age offset but fewer dates had more significant offset. Our modeling framework allows comparison of relative degrees of apparent Pb loss between samples of different age, with the first and second Wasserstein distances providing useful estimates of the total magnitude of apparent Pb loss. Given that the large majority of in situ U–Pb dates are acquired without the CA treatment, this study highlights a pressing need for improved characterization of apparent Pb-loss distributions in natural samples to aid in interpreting non-CA in situ U–Pb data and to guide future data collection strategies.
more »
« less
U–Pb ID-TIMS geochronology using ATONA amplifiers
We document the performance of new ATONA (‘aA to nA’) amplifiers installed on an Isotopx Phoenix thermal ionisation mass spectrometer (TIMS) at Princeton University and evaluate their suitability for high-precision analyses of Pb and U isotopes in pg- to ng-size samples characteristic for U–Pb geochronology. The new amplifiers are characterised by low and stable noise levels comparable to 10 12 to 10 13 ohm resistors, response time <0.5 s, exceptional gain stability <1 ppm and a vast dynamic range theoretically allowing to quantify signals from aA (10 −18 A) to nA (10 −9 A) level. We measured a set of Pb standards, synthetic U–Pb solutions and natural zircons at currents of 2 × 10 −16 to 2 × 10 −12 A (corresponding to intensities of 20 μV to 200 mV relative to a 10 11 ohm amplifier) to assess the utility of ATONA in replacing ion counting for the smallest samples. The results show a clear precision benefit of using ATONA-Faraday detection over Daly ion counting for ion currents of >10 −14 A (1 mV relative to a 10 11 ohm amplifier or ca. 60 kcps). As such currents are routinely achievable for major Pb peaks of interest ( 205–208 Pb) in natural samples containing more than ca. 10 pg Pb* (radiogenic Pb), we expect ATONA-Faraday detection to find broad applications in U–Pb geochronology. Its practical use for low-blank, radiogenic samples continues to require ion counting for 204 Pb, either with a fixed Faraday–ion counter gain or using a dynamic two-step ( e.g. FaraDaly) method. Routine adoption of ATONA-Faraday collection in place of ion counting for most major Pb and U isotopes has the potential to increase sample throughput and precision, both improving the accessibility of isotope dilution (ID)-TIMS geochronology and pushing this technique towards better reproducibility.
more »
« less
- PAR ID:
- 10163283
- Date Published:
- Journal Name:
- Journal of Analytical Atomic Spectrometry
- Volume:
- 35
- Issue:
- 6
- ISSN:
- 0267-9477
- Page Range / eLocation ID:
- 1207 to 1216
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ascough, P.; Dunai, T.; King, G.; Lang, A.; Mezger, K. (Ed.)Detrital zircon geochronology by laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) is a widely used tool for determining maximum depositional ages and sediment provenance, as well as reconstructing sediment routing pathways. Although the accuracy and precision of U–Pb geochronology measurements have improved over the past 2 decades, Pb loss continues to impact the ability to resolve zircon age populations by biasing affected zircon toward younger apparent ages. Chemical abrasion (CA) has been shown to reduce or eliminate the effects of Pb loss in zircon U–Pb geochronology but has yet to be widely applied to large-n detrital zircon analyses. Here, we assess the efficacy of the chemical abrasion treatment on zircon prior to analysis by LA-ICP-MS and discuss the advantages and limitations of this technique in relation to detrital zircon geochronology. We show that (i) CA does not systematically bias LA-ICP-MS U–Pb dates for 13 reference materials that span a wide variety of crystallization dates and U concentrations, (ii) CA-LA-ICP-MS U–Pb zircon geochronology can reduce or eliminate Pb loss in samples that have experienced significant radiation damage, and (iii) bulk CA prior to detrital zircon U–Pb geochronology by LA-ICP-MS improves the resolution of age populations defined by 206Pb/238U dates (Neoproterozoic and younger) and increases the percentage of concordant analyses in age populations defined by 207Pb/206Pb dates (Mesoproterozoic and older). The selective dissolution of zircon that has experienced high degrees of radiation damage suggests that some detrital zircon age populations could be destroyed or have their abundance significantly modified during this process. However, we did not identify this effect in either of the detrital zircon samples that were analyzed as part of this study. We conclude that pre-treatment of detrital zircon by bulk CA may be useful for applications that require increased resolution of detrital zircon populations and increased confidence that 206Pb/238U dates are unaffected by Pb loss.more » « less
-
Abstract U-Pb geochronology by isotope dilution–thermal ionization mass spectrometry (ID-TIMS) has the potential to be the most precise and accurate of the deep time chronometers, especially when applied to high-U minerals such as zircon. Continued analytical improvements have made this technique capable of regularly achieving better than 0.1% precision and accuracy of dates from commonly occurring high-U minerals across a wide range of geological ages and settings. To help maximize the long-term utility of published results, we present and discuss some recommendations for reporting ID-TIMS U-Pb geochronological data and associated metadata in accordance with accepted principles of data management. Further, given that the accuracy of reported ages typically depends on the interpretation applied to a set of individual dates, we discuss strategies for data interpretation. We anticipate that this paper will serve as an instructive guide for geologists who are publishing ID-TIMS U-Pb data, for laboratories generating the data, the wider geoscience community who use such data, and also editors of journals who wish to be informed about community standards. Combined, our recommendations should increase the utility, veracity, versatility, and “half-life” of ID-TIMS U-Pb geochronological data.more » « less
-
null (Ed.)Age determination of minerals using the U–Pb technique is widely used to quantify time in Earth's history. A number of geochronology laboratories produce the highest precision U–Pb dates employing the EARTHTIME 202 Pb– 205 Pb– 233 U– 235 U tracer solution for isotope dilution, and the EARTHTIME ET100 and ET2000 solutions for system calibration and laboratory intercalibration. Here, we report ET100 and ET2000 solution data from the geochronology laboratory of University of Geneva obtained between 2008 and 2021 and compare the most recent data with results from the geochronology laboratories of Princeton University and ETH Zürich. This compilation demonstrates that (i) the choice of the thermal ionization mass spectrometer model has no influence on precision and accuracy of the data; (ii) the often observed excess scatter of apparent ET100 solution 206 Pb/ 238 U dates can be mitigated by more careful tracer-sample equilibration; and (iii) natural zircon reference materials are not suitable for evaluating intra-laboratory repeatability and inter-laboratory reproducibility, since they combine several phenomena of natural system complexities (especially domains of different age within the same zircon grain, and residual loss of radiogenic lead in domains of high decay damage after chemical abrasion pre-treatment). We provide our best estimates of apparent dates for the ET100 solution ( 206 Pb/ 238 U date, 100.173 ± 0.003 Ma), for ET2000 solution ( 207 Pb/ 206 Pb date, 1999.935 ± 0.063 Ma), as well as for natural reference zircon Temora-2 ( 206 Pb/ 238 U date, 417.353 ± 0.052 Ma). These data will allow U–Pb laboratories to evaluate their analytical performance and to independently calibrate non-EARTHTIME tracer solutions in use.more » « less
-
Abstract Despite being a prominent continental-scale feature, the late Mesoproterozoic North American Midcontinent Rift did not result in the break-up of Laurentia, and subsequently underwent structural inversion. The timing of inversion is critical for constraining far-field effects of orogenesis and processes associated with the rift's failure. The Keweenaw fault in northern Michigan (USA) is a major thrust structure associated with rift inversion; it places ca. 1093 Ma rift volcanic rocks atop the post-rift Jacobsville Formation, which is folded in its footwall. Previous detrital zircon (DZ) U-Pb geochronology conducted by laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) assigned a ca. 950 Ma maximum age to the Jacobsville Formation and led researchers to interpret its deposition and deformation as postdating the ca. 1090–980 Ma Grenvillian Orogeny. In this study, we reproduced similar DZ dates using LA-ICP-MS and then dated 19 of the youngest DZ grains using high-precision chemical abrasion–isotope dilution–thermal ionization mass spectrometry (CA-ID-TIMS). The youngest DZ dated by CA-ID-TIMS at 992.51 ± 0.64 Ma (2σ) redefines the maximum depositional age of the Jacobsville Formation and overlaps with a U-Pb LA-ICP-MS date of 985.5 ± 35.8 Ma (2σ) for late-kinematic calcite veins within the brecciated Keweenaw fault zone. Collectively, these data are interpreted to constrain deposition of the Jacobsville Formation and final rift inversion to have occurred during the 1010–980 Ma Rigolet Phase of the Grenvillian Orogeny, following an earlier phase of Ottawan inversion. Far-field deformation propagated >500 km into the continental interior during the Ottawan and Rigolet phases of the Grenvillian Orogeny.more » « less
An official website of the United States government

