Abstract The second-order saddlepoint approximation (SOSPA) has been used for component reliability analysis for higher accuracy than the traditional second-order reliability method (SORM). This work extends the second-order saddlepoint approximation (SPA) to system reliability analysis. The joint distribution of all the component responses is approximated by a multivariate normal distribution. To maintain high accuracy of the approximation, the proposed method employs the second-order SPA to accurately generate the marginal distributions of the component responses; to simplify computations and achieve high efficiency, the proposed method estimates the covariance matrix of the multivariate normal distribution with the first-order approximation to the component responses. Examples demonstrate the high effectiveness of the second-order SPA method for system reliability analysis.
more »
« less
System Reliability Analysis With Second Order Saddlepoint Approximation
The second order saddlepoint approximation (SPA) has been used for component reliability analysis for higher accuracy than the traditional second order reliability method. This work extends the second order SPA to system reliability analysis. The joint distribution of all the component responses is approximated by a multivariate normal distribution. To maintain high accuracy of the approximation, the proposed method employs the second order SPA to accurately generate the marginal distributions of component responses; to simplify computations and achieve high efficiency, the proposed method estimates the covariance matrix of the multivariate normal distribution with the first order approximation to component responses. Examples demonstrate the high effectiveness of the second order SPA method for system reliability analysis.
more »
« less
- Award ID(s):
- 1923799
- PAR ID:
- 10163527
- Date Published:
- Journal Name:
- The ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract System reliability is quantified by the probability that a system performs its intended function in a period of time without failures. System reliability can be predicted if all the limit-state functions of the components of the system are available, and such a prediction is usually time consuming. This work develops a time-dependent system reliability method that is extended from the component time-dependent reliability method using the envelope method and second-order reliability method. The proposed method is efficient and is intended for series systems with limit-state functions whose input variables include random variables and time. The component reliability is estimated by the second-order component reliability method with an improve envelope approach, which produces a component reliability index. The covariance between component responses is estimated with the first-order approximations, which are available from the second-order approximations of the component reliability analysis. Then, the joint distribution of all the component responses is approximated by a multivariate normal distribution with its mean vector being component reliability indexes and covariance being those between component responses. The proposed method is demonstrated and evaluated by three examples.more » « less
-
null (Ed.)Abstract System reliability is quantified by the probability that a system performs its intended function in a period of time without failure. System reliability can be predicted if all the limit-state functions of the components of the system are available, and such a prediction is usually time consuming. This work develops a time-dependent system reliability method that is extended from the component time-dependent reliability method that uses the envelop method and second order reliability method. The proposed method is efficient and is intended for series systems with limit-state functions whose input variables include random variables and time. The component reliability is estimated by the existing second order component reliability method, which produces component reliability indexes. The covariance between components responses are estimated with the first order approximations, which are available from the second order approximations of the component reliability analysis. Then the joint probability of all the component responses is approximated by a multivariate normal distribution with its mean vector being component reliability indexes and covariance being those between component responses. The proposed method is demonstrated and evaluated by three examples.more » « less
-
Abstract Reliability analysis is usually a core element in engineering design, during which reliability is predicted with physical models (limit-state functions). Reliability analysis becomes computationally expensive when the dimensionality of input random variables is high. This work develops a high dimensional reliability analysis method by a new dimension reduction strategy so that the contributions of both important and unimportant input variables are accommodated by the proposed dimension reduction method. The consideration of the contributions of unimportant input variables can certainly improve the accuracy of the reliability prediction, especially where many unimportant input variables are involved. The dimension reduction is performed with the first iteration of the first order reliability method (FORM), which identifies important and unimportant input variables. Then a higher order reliability analysis, such as the second order reliability analysis and metamodeling method, is performed in the reduced space of only important input variables. The reliability obtained in the reduced space is then integrated with the contributions of unimportant input variables, resulting in the final reliability prediction that accounts for both types of input variables. Consequently, the new reliability method is more accurate than the traditional method, which fixes unimportant input variables at their means. The accuracy is demonstrated by three examples.more » « less
-
Abstract When limit-state functions are highly nonlinear, traditional reliability methods, such as the first-order and second-order reliability methods, are not accurate. Monte Carlo simulation (MCS), on the other hand, is accurate if a sufficient sample size is used but is computationally intensive. This research proposes a new system reliability method that combines MCS and the Kriging method with improved accuracy and efficiency. Accurate surrogate models are created for limit-state functions with minimal variance in the estimate of the system reliability, thereby producing high accuracy for the system reliability prediction. Instead of employing global optimization, this method uses MCS samples from which training points for the surrogate models are selected. By considering the autocorrelation of a surrogate model, this method captures the more accurate contribution of each MCS sample to the uncertainty in the estimate of the serial system reliability and therefore chooses training points efficiently. Good accuracy and efficiency are demonstrated by four examples.more » « less