skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inorganic carbon fixation in ice-covered lakes of the McMurdo Dry Valleys
Abstract Inorganic carbon fixation, usually mediated by photosynthetic microorganisms, is considered to form the base of the food chain in aquatic ecosystems. In high-latitude lakes, lack of sunlight owing to seasonal solar radiation limits the activity of photosynthetic plankton during the polar winter, causing respiration-driven demand for carbon to exceed supply. Here, we show that inorganic carbon fixation in the dark, driven by organisms that gain energy from chemical reactions rather than sunlight (chemolithoautotrophs), provides a significant influx of fixed carbon to two permanently ice-covered lakes (Fryxell and East Bonney). Fryxell, which has higher biomass per unit volume of water, had higher rates of inorganic dark carbon fixation by chemolithoautotrophs than East Bonney (trophogenic zone average 1.0 µg C l −1 d −1 vs 0.08 µg C l −1 d −1 , respectively). This contribution from dark carbon fixation was partly due to the activity of ammonia oxidizers, which are present in both lakes. Despite the potential importance of new carbon input by chemolithoautotrophic activity, both lakes remain net heterotrophic, with respiratory demand for carbon exceeding supply. Dark carbon fixation increased the ratio of new carbon supply to respiratory demand from 0.16 to 0.47 in Fryxell, and from 0.14 to 0.22 in East Bonney.  more » « less
Award ID(s):
1637708
PAR ID:
10163596
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Antarctic Science
Volume:
31
Issue:
3
ISSN:
0954-1020
Page Range / eLocation ID:
123 to 132
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Cyanobacteria contribute to roughly a quarter of global net carbon fixation. During diel light/dark growth, dark respiration substantially lowers the overall photosynthetic carbon yield in cyanobacteria and other phototrophs. How respiratory pathways participate in carbon resource allocation at night to optimize dark survival and support daytime photosynthesis remains unclear. Here, using the cyanobacterium Synechococcus elongatus PCC 7942, we show that phosphoketolase integrates into a respiratory network in the dark to best allocate carbon resources for amino acid biosynthesis and to prepare for photosynthesis reinitiation upon photoinduction. Moreover, we show that the respiratory Entner–Doudoroff pathway in S. elongatus is incomplete, with its key enzyme 2-keto-3-deoxy-6-phosphogluconate aldolase exhibiting alternative oxaloacetate decarboxylation activity that modulates daytime photosynthesis. This activity allows for the bypassing of the tricarboxylic acid cycle when ATP and NADPH consumption for biosynthesis is excessive and imbalanced relative to their production by the light reactions, thereby preventing relative NADPH accumulation and ensuring optimal photosynthetic carbon yield. Optimizing these metabolic processes offers opportunities to enhance photosynthetic carbon yield in cyanobacteria and other photosynthetic organisms under diel light/dark cycles. 
    more » « less
  2. Abstract The photosynthetic cyanobacterium Trichodesmium is widely distributed in the surface low latitude ocean where it contributes significantly to N2 fixation and primary productivity. Previous studies found nifH genes and intact Trichodesmium colonies in the sunlight-deprived meso- and bathypelagic layers of the ocean (200–4000 m depth). Yet, the ability of Trichodesmium to fix N2 in the dark ocean has not been explored. We performed 15N2 incubations in sediment traps at 170, 270 and 1000 m at two locations in the South Pacific. Sinking Trichodesmium colonies fixed N2 at similar rates than previously observed in the surface ocean (36–214 fmol N cell−1 d−1). This activity accounted for 40 ± 28% of the bulk N2 fixation rates measured in the traps, indicating that other diazotrophs were also active in the mesopelagic zone. Accordingly, cDNA nifH amplicon sequencing revealed that while Trichodesmium accounted for most of the expressed nifH genes in the traps, other diazotrophs such as Chlorobium and Deltaproteobacteria were also active. Laboratory experiments simulating mesopelagic conditions confirmed that increasing hydrostatic pressure and decreasing temperature reduced but did not completely inhibit N2 fixation in Trichodesmium. Finally, using a cell metabolism model we predict that Trichodesmium uses photosynthesis-derived stored carbon to sustain N2 fixation while sinking into the mesopelagic. We conclude that sinking Trichodesmium provides ammonium, dissolved organic matter and biomass to mesopelagic prokaryotes. 
    more » « less
  3. High-latitude meromictic lakes such as those in the Antarctic McMurdo Dry Valleys (MDV) harbor aquatic ecosystems dominated by the microbial loop. Within this habitat, which is limited year-round by light and nutrients, protists, or single celled eukaryotes, play outsized roles in the food web as the dominant primary producers and the apex predators. Thus, the MDV lake ecosystem represents an ideal system to study the role of sentinel protist taxa in carbon and nutrient cycling. The perennially ice-covered lakes are part of the McMurdo Long Term Ecological Research (McM LTER; mcmlter.org) established in 1993. In this review we will highlight the diversity and trophic roles of the MDV lake protist community and compare environmental factors driving spatiotemporal patterns in key protist taxa in two lakes within the McM LTER, Lakes Bonney and Fryxell. We will then discuss lessons learned from manipulated experiments on the impact of current and future climate-driven environmental change on sensitive protist taxa. Last, we will integrate knowledge gained from 25 years of lab-controlled experiments on key photosynthetic protists to extend our understanding of the function of these extremophiles within the MDV aquatic food webs. Our research group has studied the distribution and function of the MDV microbial community for nearly two decades, training the next generation of scientists to tackle future problems of these globally significant microbes. This review article will also highlight early career scientists who have contributed to this body of work and represent the future of scientific understanding in the Anthropocene. 
    more » « less
  4. We performed assays of chemoautotrophic carbon fixation and compared measured rates to rates predicted from oxidation of ammonia (AO), urea (UO) and nitrite (NO) N. Water samples used in this study were taken from aerobic shelf waters at stations on the continental shelf and slope west of the Antarctic Peninsula during January and February of 2018 (LMG1801). Chemoautotrophic carbon fixation rates averaged 1.8 and 1.7 nmol C L-1 d-1 in Winter Water (WW, 35-100 m) and Circumpolar Deep Water (CDW, 175-1000 m) water masses, respectively. Integrated over 1 year and a 440 m water column (excluding the Antarctic Surface Water mass, 0-34 m), chemoautotrophic production accounted for ~7 gC m2 yr-1, compared to an estimated mean annual photoautotrophic production of 180 gC m2 y-1. Chemoautotrophy in WW samples supported by AO, UO or NO was the equivalent of 0.91, 0.06, 0.13 nmol C L-1 d-1, while it was the equivalent of 0.37, 0.21 and 0.08 nmol C L-1 d-1 in samples from the CDW water mass. Chemoautotrophy coupled to AO+UO accounted for ~124% and ~55% of measured C fixation rates in these water masses, while chemoautotrophy coupled to complete nitrification (AO+UO+NO) accounted for ~128 and ~60% of measured C fixation rates. The mean turnover times for nitrite pools base on NO were 138 ± 35 d and 15 ± 3 d in WW and CDW samples, respectively. The rate of nitrite production from AO+UO in WW and CDW samples was 503 ± 233 and 24 ± 7 nmol L-1 d-1, respectively. The replacement time for the nitrite pool in the WW water mass by AO+UO calculated from these averages is 33 d while it is 9 d in the CDW. These calculations suggest the possibility of an additional sink for nitrite in the WW. 
    more » « less
  5. Abstract Water quality monitoring is relevant for protecting the designated, or beneficial uses, of water such as drinking, aquatic life, recreation, irrigation, and food supply that support the economy, human well-being, and aquatic ecosystem health. Managing finite water resources to support these designated uses requires information on water quality so that managers can make sustainable decisions. Chlorophyll- a (chl- a , µg L −1 ) concentration can serve as a proxy for phytoplankton biomass and may be used as an indicator of increased anthropogenic nutrient stress. Satellite remote sensing may present a complement to in situ measures for assessments of water quality through the retrieval of chl- a with in-water algorithms. Validation of chl- a algorithms across US lakes improves algorithm maturity relevant for monitoring applications. This study compares performance of the Case 2 Regional Coast Colour (C2RCC) chl- a retrieval algorithm, a revised version of the Maximum-Peak Height (MPH (P) ) algorithm, and three scenarios merging these two approaches. Satellite data were retrieved from the MEdium Resolution Imaging Spectrometer (MERIS) and the Ocean and Land Colour Instrument (OLCI), while field observations were obtained from 181 lakes matched with U.S. Water Quality Portal chl- a data. The best performance based on mean absolute multiplicative error (MAE mult ) was demonstrated by the merged algorithm referred to as C 15 −M 10 (MAE mult  = 1.8, bias mult  = 0.97, n  = 836). In the C 15 −M 10 algorithm, the MPH (P) chl- a value was retained if it was > 10 µg L −1 ; if the MPH (P) value was ≤ 10 µg L −1 , the C2RCC value was selected, as long as that value was < 15 µg L −1 . Time-series and lake-wide gradients compared against independent assessments from Lake Champlain and long-term ecological research stations in Wisconsin were used as complementary examples supporting water quality reporting requirements. Trophic state assessments for Wisconsin lakes provided examples in support of inland water quality monitoring applications. This study presents and assesses merged adaptations of chl- a algorithms previously reported independently. Additionally, it contributes to the transition of chl- a algorithm maturity by quantifying error statistics for a number of locations and times. 
    more » « less