Ocean colour is recognised as an Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS); and spectrally-resolved water-leaving radiances (or remote-sensing reflectances) in the visible domain, and chlorophyll-a concentration are identified as required ECV products. Time series of the products at the global scale and at high spatial resolution, derived from ocean-colour data, are key to studying the dynamics of phytoplankton at seasonal and inter-annual scales; their role in marine biogeochemistry; the global carbon cycle; the modulation of how phytoplankton distribute solar-induced heat in the upper layers of the ocean; and the response of the marine ecosystem to climate variability and change. However, generating a long time series of these products from ocean-colour data is not a trivial task: algorithms that are best suited for climate studies have to be selected from a number that are available for atmospheric correction of the satellite signal and for retrieval of chlorophyll-a concentration; since satellites have a finite life span, data from multiple sensors have to be merged to create a single time series, and any uncorrected inter-sensor biases could introduce artefacts in the series, e.g., different sensors monitor radiances at different wavebands such that producing a consistent time series of reflectances is not straightforward. Another requirement is that the products have to be validated against in situ observations. Furthermore, the uncertainties in the products have to be quantified, ideally on a pixel-by-pixel basis, to facilitate applications and interpretations that are consistent with the quality of the data. This paper outlines an approach that was adopted for generating an ocean-colour time series for climate studies, using data from the MERIS (MEdium spectral Resolution Imaging Spectrometer) sensor of the European Space Agency; the SeaWiFS (Sea-viewing Wide-Field-of-view Sensor) and MODIS-Aqua (Moderate-resolution Imaging Spectroradiometer-Aqua) sensors from the National Aeronautics and Space Administration (USA); and VIIRS (Visible and Infrared Imaging Radiometer Suite) from the National Oceanic and Atmospheric Administration (USA). The time series now covers the period from late 1997 to end of 2018. To ensure that the products meet, as well as possible, the requirements of the user community, marine-ecosystem modellers, and remote-sensing scientists were consulted at the outset on their immediate and longer-term requirements as well as on their expectations of ocean-colour data for use in climate research. Taking the user requirements into account, a series of objective criteria were established, against which available algorithms for processing ocean-colour data were evaluated and ranked. The algorithms that performed best with respect to the climate user requirements were selected to process data from the satellite sensors. Remote-sensing reflectance data from MODIS-Aqua, MERIS, and VIIRS were band-shifted to match the wavebands of SeaWiFS. Overlapping data were used to correct for mean biases between sensors at every pixel. The remote-sensing reflectance data derived from the sensors were merged, and the selected in-water algorithm was applied to the merged data to generate maps of chlorophyll concentration, inherent optical properties at SeaWiFS wavelengths, and the diffuse attenuation coefficient at 490 nm. The merged products were validated against in situ observations. The uncertainties established on the basis of comparisons with in situ data were combined with an optical classification of the remote-sensing reflectance data using a fuzzy-logic approach, and were used to generate uncertainties (root mean square difference and bias) for each product at each pixel.
more »
« less
Merging of the Case 2 Regional Coast Colour and Maximum-Peak Height chlorophyll-a algorithms: validation and demonstration of satellite-derived retrievals across US lakes
Abstract Water quality monitoring is relevant for protecting the designated, or beneficial uses, of water such as drinking, aquatic life, recreation, irrigation, and food supply that support the economy, human well-being, and aquatic ecosystem health. Managing finite water resources to support these designated uses requires information on water quality so that managers can make sustainable decisions. Chlorophyll- a (chl- a , µg L −1 ) concentration can serve as a proxy for phytoplankton biomass and may be used as an indicator of increased anthropogenic nutrient stress. Satellite remote sensing may present a complement to in situ measures for assessments of water quality through the retrieval of chl- a with in-water algorithms. Validation of chl- a algorithms across US lakes improves algorithm maturity relevant for monitoring applications. This study compares performance of the Case 2 Regional Coast Colour (C2RCC) chl- a retrieval algorithm, a revised version of the Maximum-Peak Height (MPH (P) ) algorithm, and three scenarios merging these two approaches. Satellite data were retrieved from the MEdium Resolution Imaging Spectrometer (MERIS) and the Ocean and Land Colour Instrument (OLCI), while field observations were obtained from 181 lakes matched with U.S. Water Quality Portal chl- a data. The best performance based on mean absolute multiplicative error (MAE mult ) was demonstrated by the merged algorithm referred to as C 15 −M 10 (MAE mult = 1.8, bias mult = 0.97, n = 836). In the C 15 −M 10 algorithm, the MPH (P) chl- a value was retained if it was > 10 µg L −1 ; if the MPH (P) value was ≤ 10 µg L −1 , the C2RCC value was selected, as long as that value was < 15 µg L −1 . Time-series and lake-wide gradients compared against independent assessments from Lake Champlain and long-term ecological research stations in Wisconsin were used as complementary examples supporting water quality reporting requirements. Trophic state assessments for Wisconsin lakes provided examples in support of inland water quality monitoring applications. This study presents and assesses merged adaptations of chl- a algorithms previously reported independently. Additionally, it contributes to the transition of chl- a algorithm maturity by quantifying error statistics for a number of locations and times.
more »
« less
- Award ID(s):
- 2025982
- PAR ID:
- 10399281
- Date Published:
- Journal Name:
- Environmental Monitoring and Assessment
- Volume:
- 194
- Issue:
- 3
- ISSN:
- 0167-6369
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Green Lake is the deepest natural inland lake in Wisconsin, with a maximum depth of about 72 meters. In the early 1900s, the lake was believed to have very good water quality (low nutrient concentrations and good water clarity) with low dissolved oxygen (DO) concentrations occurring in only the deepest part of the lake. Because of increased phosphorus (P) inputs from anthropogenic activities in its watershed, total phosphorus (TP) concentrations in the lake have increased; these changes have led to increased algal production and low DO concentrations not only in the deepest areas but also in the middle of the water column (metalimnion). The U.S. Geological Survey has routinely monitored the lake since 2004 and its tributaries since 1988. Results from this monitoring led the Wisconsin Department of Natural Resources (WDNR) to list the lake as impaired because of low DO concentrations in the metalimnion, and they identified elevated TP concentrations as the cause of impairment. As part of this study by the U.S. Geological Survey, in cooperation with the Green Lake Sanitary District, the lake and its tributaries were comprehensively sampled in 2017–18 to augment ongoing monitoring that would further describe the low DO concentrations in the lake (especially in the metalimnion). Empirical and process-driven water-quality models were then used to determine the causes of the low DO concentrations and the magnitudes of P-load reductions needed to improve the water quality of the lake enough to meet multiple water-quality goals, including the WDNR’s criteria for TP and DO. Data from previous studies showed that DO concentrations in the metalimnion decreased slightly as summer progressed in the early 1900s but, since the late 1970s, have typically dropped below 5 milligrams per liter (mg/L), which is the WDNR criterion for impairment. During 2014–18 (the baseline period for this study), the near-surface geometric mean TP concentration during June–September in the east side of the lake was 0.020 mg/L and in the west side was 0.016 mg/L (both were above the 0.015-mg/L WDNR criterion for the lake), and the metalimnetic DO minimum concentrations (MOMs) measured in August ranged from 1.0 to 4.7 mg/L. The degradation in water quality was assumed to have been caused by excessive P inputs to the lake; therefore, the TP inputs to the lake were estimated. The mean annual external P load during 2014–18 was estimated to be 8,980 kilograms per year (kg/yr), of which monitored and unmonitored tributary inputs contributed 84 percent, atmospheric inputs contributed 8 percent, waterfowl contributed 7 percent, and septic systems contributed 1 percent. During fall turnover, internal sediment recycling contributed an additional 7,040 kilograms that increased TP concentrations in shallow areas of the lake by about 0.020 mg/L. The elevated TP concentrations then persisted until the following spring. On an annual basis, however, there was a net deposition of P to the bottom sediments. Empirical models were used to describe how the near-surface water quality of Green Lake would be expected to respond to changes in external P loading. Predictions from the models showed a relatively linear response between P loading and TP and chlorophyll-a (Chl-a) concentrations in the lake, with the changes in TP and Chl-a concentrations being less on a percentage basis (50–60 percent for TP and 30–70 percent for Chl-a) than the changes in P loading. Mean summer water clarity, quantified by Secchi disk depths, had a greater response to decreases in P loading than to increases in P loading. Based on these relations, external P loading to the lake would need to be decreased from 8,980 kg/yr to about 5,460 kg/yr for the geometric mean June–September TP concentration in the east side of the lake, with higher TP concentrations than in the west side, to reach the WDNR criterion of 0.015 mg/L. This reduction of 3,520 kg/yr is equivalent to a 46-percent reduction in the potentially controllable external P sources (all external sources except for precipitation, atmospheric deposition, and waterfowl) from those measured during water years 2014–18. The total external P loading would need to decrease to 7,680 kg/yr (a 17-percent reduction in potentially controllable external P sources) for near-surface June–September TP concentrations in the west side of the lake to reach 0.015 mg/L. Total external P loading would need to decrease to 3,870–5,320 kg/yr for the lake to be classified as oligotrophic, with a near-surface June–September TP concentration of 0.012 mg/L. Results from the hydrodynamic water-quality model GLM–AED (General Lake Model coupled to the Aquatic Ecodynamics modeling library) indicated that MOMs are driven by external P loading and internal sediment recycling that lead to high TP concentrations during spring and early summer, which in turn lead to high phytoplankton production, high metabolism and respiration, and ultimately DO consumption in the upper, warmer areas of the metalimnion. GLM–AED results indicated that settling of organic material during summer might be slowed by the colder, denser, and more viscous water in the metalimnion and thus increase DO consumption. Based on empirical evidence from a comparison of MOMs with various meteorological, hydrologic, water quality, and in-lake physical factors, MOMs were lower during summers, when metalimnetic water temperatures were warmer, near-surface Chl-a and TP concentrations were higher, and Secchi depths were lower. GLM–AED results indicated that the external P load would need to be reduced to about 4,060 kg/yr, a 57-percent reduction from that measured in 2014–18, to eliminate the occurrence of MOMs less than 5 mg/L during more than 75 percent of the years (the target provided by the WDNR). Large reductions in external P loading are expected to have an immediate effect on the near-surface TP concentrations and metalimnetic DO concentrations in Green Lake; however, it may take several years for the full effects of the external-load reduction to be observed because internal sediment recycling is an important source of P for the following spring.more » « less
-
Macroinvertebrates are collected from selected shoreline and deep water locations in the seven primary lakes (Allequash, Big Muskellunge, Crystal, Sparkling, and Trout lakes, and unnamed lakes 27-02 [Crystal Bog], and 12-15 [Trout Bog]) in the Trout Lake area using modified Hester-Dendy samplers. Samplers are placed at fyke net and gill net locations in August and retrieved 3-4 weeks later. Macroinvertebrates are preserved in ethanol. This dataset contains counts of various groups of macroinvertebrates identified from specific samples. The majority of the identifications are at the genus level. The data table "Benthic Macroinvertebrate Codes" identifies the taxonomic group represented by each group code. Taxonomic references: Ecology and Classification of North American Freshwater Invertebrates, Edited by James H Thorp and Alan P Covich, Academic Press, Inc, 1991; Aquatic Insects of Wisconsin, William L Hilsenhoff, Natural History Museums Council, University of Wisconsin-Madison (1995). Sampling Frequency: annually Number of sites: 7. Samplers were set in all seven lakes in 1981-1989,1992 and 1993. Only Trout, Sparkling, and Crystal Lakes were sampled in 1990, 1991, and 1994 to present. No lakes were sampled in 2020 or 2021.more » « less
-
ABSTRACT Phytoplankton community composition during austral summer 2022 in the Argo Abyssal Plain (Argo Basin), a 5000-m deep area northwest of the Australian continent in the eastern Indian Ocean, is described in detail, including phytoplankton abundance, biomass, size structure, taxonomic identifications through DNA and pigment analyses, as well as the percent of functional mixotrophs. The region was characterized by warm (up to 30.5°C), stratified, oligotrophic (nitrogen-limited) waters, with integrated euphotic zone (EZ) chlorophyll a (CHLa) of 13 mg m-2. The EZ mean CHLawas low in the upper layer (0.085 µg L-1) and 0.32 µg L-1at the pronounced deep CHLamaxima. EZ-integrated phytoplankton carbon averaged 1229 mg C m-2.Prochlorococcuswas the dominant taxon throughout the EZ, but the lower EZ had ∼4-times more eukaryotic carbon biomass than the upper EZ, along with a distinct community. In the upper EZ, prymnesiophytes, dinoflagellates and prasinophyte taxa without prasinoxanthin had the highest contributions to monovinyl chlorophyll a (MV-CHLa). In the lower EZ the community was more diverse, with prymnesiophytes, dinoflagellates, prasinophyte taxa with prasinoxanthin, pelagophytes, and cryptophytes all comprising significant contributions to MV-CHLa. Diatoms were a minor part of the community. In the upper EZ, a higher percent of the community showed mixotrophy (35-84%) relative to the lower EZ (30-51%). Although a low abundance, nitrogen-fixing organisms (symbionts of diatoms and cyanobacteria taxa) were ubiquitous. Overall, the community was similar to that found at the Hawaii Ocean Time-series site and the central Gulf of Mexico.more » « less
-
The size and distribution of Phytoplankton populations are indicators of the ecological status of a water body. The chlorophyll-a (Chl-a) concentration is estimated as a proxy for the distribution of phytoplankton biomass. Remote sensing is the only practical method for the synoptic assessment of Chl-a at large spatial and temporal scales. Long-term records of ocean color data from the MODIS Aqua Sensor have proven inadequate to assess Chl-a due to the lack of a robust ocean color algorithm. Chl-a estimation in shallow and coastal water bodies has been a challenge and existing operational algorithms are only suitable for deeper water bodies. In this study, the Ocean Color 3M (OC3M) derived Chl-a concentrations were compared with observed data to assess the performance of the OC3M algorithm. Subsequently, a regression analysis between in situ Chl-a and remote sensing reflectance was performed to obtain a green-red band algorithm for coastal (case 2) water. The OC3M algorithm yielded an accurate estimate of Chl-a for deep ocean (case 1) water (RMSE = 0.007, r2 = 0.518, p < 0.001), but failed to perform well in the coastal (case 2) water of Chesapeake Bay (RMSE = 23.217, r2 = 0.009, p = 0.356). The algorithm developed in this study predicted Chl-a more accurately in Chesapeake Bay (RMSE = 4.924, r2 = 0.444, p < 0.001) than the OC3M algorithm. The study indicates a maximum band ratio formulation using green and red bands could improve the satellite estimation of Chl-a in coastal waters.more » « less
An official website of the United States government

