skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Indication of a twist-grain-boundary-twist-bend phase of flexible core bent-shape chiral dimers
The effect of the molecular chirality of chiral additives on the nanostructure of the twist-bend nematic (N TB ) liquid crystal phase with ambidextrous chirality and nanoscale pitch due to spontaneous symmetry breaking is studied. It is found that the ambidextrous nanoscale pitch of the N TB phase increases by 50% due to 3% chiral additive, and the chiral transfer among the biphenyl groups disappears in the N TB * phase. Most significantly, a twist-grain boundary (TGB) type phase is found at c > 1.5 wt% chiral additive concentrations below the usual N* phase and above the non-CD active N TB * phase. In such a TGB type phase, the adjacent blocks of pseudo-layers of the nanoscale pitch rotate across the grain boundaries.  more » « less
Award ID(s):
1659571
PAR ID:
10163825
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
15
Issue:
16
ISSN:
1744-683X
Page Range / eLocation ID:
3283 to 3290
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1.  
    more » « less
  2. Khoo, Iam Choon (Ed.)
    We explore the structures and confinement-induced edge dislocations in Grandjean-Cano wedge cells filled with the recently discovered chiral ferroelectric nematic (N_F^*) and chiral antiferroelectric smectic-Z 〖(SmZ〗_A^*). The chiral mixture is formed by DIO mesogen doped with a chiral additive. Wedge cells with parallel and antiparallel rubbing at the opposite plates show quantitatively different structures which is attributed to the polar in-plane anchoring of the spontaneous polarization at the rubbed substrates. The helical pitch shows a non-monotonous temperature dependence upon cooling, increasing as the temperature is lowered to the N^*-SmZ_A^* phase transition. The SmZ_A^* formed from an untwisted N^* in the thin portion of the wedge shows a bookshelf (BK) geometry, whereas the twisted N^* transforms into a twisted planar (PA) SmZ_A^* structure. In the N_F^* phase, the untwisted N^* becomes twisted in a wedge with antiparallel assembly of plates and monodomain in wedges with parallel assembly. The twisted regions of N_F^* show only one type of Grandjean zones separated by thick edge dislocations with Burgers vector b=P; the neighboring regions differ by 2π- twist. 
    more » « less
  3.  
    more » « less
  4. Abstract

    Moiré patterns at van der Waals interfaces between twisted 2D crystals give rise to distinct optoelectronic excitations, as well as, narrowly dispersive bands responsible for correlated electron phenomena. Contrasting with the conventional, mechanically stacked planar twist moirés, recent work shows twisted van der Waals interfaces spontaneously formed in nanowires of layered crystals, where Eshelby twist due to axial screw dislocations stabilizes a chiral structure with small interlayer rotation. Here, the realization of tunable twist in germanium(II) sulfide (GeS) van der Waals nanowires is reported. Tapered nanowires host continuously variable interlayer twist. Homojunctions between dislocated (chiral) and defect‐free (achiral) segments are obtained by triggering the emission of axial dislocations during growth. Measurements across such junctions, implemented here using local absorption and luminescence spectroscopy, provide a convenient tool for detecting twist effects. The results identify a versatile system for 3D twistronics, probing moiré physics, and for realizing moiré architectures without equivalent in planar systems.

     
    more » « less
  5. Defined based on geometric concepts, the origin of biological homochirality including the single handedness of key building blocks, D-sugars and L-amino acids, is still heavily debated in many ongoing research endeavors. Origin aside, transmission and amplification of chirality across length scales are likely essential for the predominance of one handedness over the other in chiral systems and are attracting an unabated interest not only in biology but also in material science. To offer a measure for chirality and through-space chirality transfer, we here provide a report on recent progress toward the development of a suitable approach for an a priori prediction of chirality “strength” and efficacy of chirality transfer from a chiral solute to an achiral nematic solvent. We achieve this by combining an independently calculated, suitable pseudoscalar chirality indicator for the solute with another, independently calculated scalar solute–solvent shape compatibility factor. In our ongoing pursuit to put this approach to the test, we are advancing and refining a versatile experimental platform based on achiral gold nanoparticle cores varying in size, shape, and aspect ratio capped with monolayers of chiral molecules or on intrinsically chiral cellulose nanocrystals that serve as chiral solutes in an achiral nematic liquid crystal phase acting as a reporter medium. The pitch of the ensuing induced chiral nematic liquid crystal phase ultimately serves as a reporter medium that allows us to experimentally quantify and compare chirality and efficacy of chirality transfer. 
    more » « less