skip to main content

Title: Causal Relational Learning
Causal inference is at the heart of empirical research in natu- ral and social sciences and is critical for scientific discovery and informed decision making. The gold standard in causal inference is performing randomized controlled trials; unfortu- nately these are not always feasible due to ethical, legal, or cost constraints. As an alternative, methodologies for causal inference from observational data have been developed in sta- tistical studies and social sciences. However, existing meth- ods critically rely on restrictive assumptions such as the study population consisting of homogeneous elements that can be represented in a single flat table, where each row is referred to as a unit. In contrast, in many real-world set- tings, the study domain naturally consists of heterogeneous elements with complex relational structure, where the data is naturally represented in multiple related tables. In this paper, we present a formal framework for causal inference from such relational data. We propose a declarative language called CaRL for capturing causal background knowledge and assumptions, and specifying causal queries using simple Datalog-like rules. CaRL provides a foundation for infer- ring causality and reasoning about the effect of complex interventions in relational domains. We present an extensive experimental evaluation on real relational data to illustrate the applicability of CaRL in social sciences and healthcare.  more » « less
Award ID(s):
1703281 1907997 1703431 1740850 1703331
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Page Range / eLocation ID:
241 to 256
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In real-world phenomena which involve mutual influence or causal effects between interconnected units, equilibrium states are typically represented with cycles in graphical models. An expressive class of graphical models, relational causal models, can represent and reason about complex dynamic systems exhibiting such cycles or feedback loops. Existing cyclic causal discovery algorithms for learning causal models from observational data assume that the data instances are independent and identically distributed which makes them unsuitable for relational causal models. At the same time, causal discovery algorithms for relational causal models assume acyclicity. In this work, we examine the necessary and sufficient conditions under which a constraint-based relational causal discovery algorithm is sound and complete for cyclic relational causal models. We introduce relational acyclification, an operation specifically designed for relational models that enables reasoning about the identifiability of cyclic relational causal models. We show that under the assumptions of relational acyclification and sigma-faithfulness, the relational causal discovery algorithm RCD is sound and complete for cyclic relational models. We present experimental results to support our claim. 
    more » « less
  2. Abstract

    Claiming causal inferences in network settings necessitates careful consideration of the often complex dependency between outcomes for actors. Of particular importance are treatment spillover or outcome interference effects. We consider causal inference when the actors are connected via an underlying network structure. Our key contribution is a model for causality when the underlying network is endogenous; where the ties between actors and the actor covariates are statistically dependent. We develop a joint model for the relational and covariate generating process that avoids restrictive separability and fixed network assumptions, as these rarely hold in realistic social settings. While our framework can be used with general models, we develop the highly expressive class of Exponential-family Random Network models (ERNM) of which Markov random fields and Exponential-family Random Graph models are special cases. We present potential outcome-based inference within a Bayesian framework and propose a modification to the exchange algorithm to allow for sampling from ERNM posteriors. We present results of a simulation study demonstrating the validity of the approach. Finally, we demonstrate the value of the framework in a case study of smoking in the context of adolescent friendship networks.

    more » « less
  3. A significant body of research in the data sciences considers unfair discrimination against social categories such as race or gender that could occur or be amplified as a result of algorithmic decisions. Simultaneously, real-world disparities continue to exist, even before algorithmic decisions are made. In this work, we draw on insights from the social sciences brought into the realm of causal modeling and constrained optimization, and develop a novel algorithmic framework for tackling pre-existing real-world disparities. The purpose of our framework, which we call the “impact remediation framework,” is to measure real-world disparities and discover the optimal intervention policies that could help improve equity or access to opportunity for those who are underserved with respect to an outcome of interest. We develop a disaggregated approach to tackling pre-existing disparities that relaxes the typical set of assumptions required for the use of social categories in structural causal models. Our approach flexibly incorporates counterfactuals and is compatible with various ontological assumptions about the nature of social categories. We demonstrate impact remediation with a hypothetical case study and compare our disaggregated approach to an existing state-of-the-art approach, comparing its structure and resulting policy recommendations. In contrast to most work on optimal policy learning, we explore disparity reduction itself as an objective, explicitly focusing the power of algorithms on reducing inequality. 
    more » « less
  4. The heart of the scientific enterprise is a rational effort to understand the causes behind the phenomena we observe. In large-scale complex dynamical systems such as the Earth system, real experiments are rarely feasible. However, a rapidly increasing amount of observational and simulated data opens up the use of novel data-driven causal methods beyond the commonly adopted correlation techniques. Here, we give an overview of causal inference frameworks and identify promising generic application cases common in Earth system sciences and beyond. We discuss challenges and initiate the benchmark platform to close the gap between method users and developers. 
    more » « less
  5. Conditional independence (CI) tests play a central role in statistical inference, machine learning, and causal discovery. Most existing CI tests assume that the samples are indepen- dently and identically distributed (i.i.d.). How- ever, this assumption often does not hold in the case of relational data. We define Relational Conditional Independence (RCI), a generaliza- tion of CI to the relational setting. We show how, under a set of structural assumptions, we can test for RCI by reducing the task of test- ing for RCI on non-i.i.d. data to the problem of testing for CI on several data sets each of which consists of i.i.d. samples. We develop Kernel Relational CI test (KRCIT), a nonpara- metric test as a practical approach to testing for RCI by relaxing the structural assumptions used in our analysis of RCI. We describe re- sults of experiments with synthetic relational data that show the benefits of KRCIT relative to traditional CI tests that don’t account for the non-i.i.d. nature of relational data. 
    more » « less