skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Causal inference in coupled human and natural systems
Coupled human and natural systems (CHANS) are complex, dynamic, interconnected systems with feedback across social and environmental dimensions. This feedback leads to formidable challenges for causal inference. Two significant challenges involve assumptions about excludability and the absence of interference. These two assumptions have been largely unexplored in the CHANS literature, but when either is violated, causal inferences from observable data are difficult to interpret. To explore their plausibility, structural knowledge of the system is requisite, as is an explicit recognition that most causal variables in CHANS affect a coupled pairing of environmental and human elements. In a large CHANS literature that evaluates marine protected areas, nearly 200 studies attempt to make causal claims, but few address the excludability assumption. To examine the relevance of interference in CHANS, we develop a stylized simulation of a marine CHANS with shocks that can represent policy interventions, ecological disturbances, and technological disasters. Human and capital mobility in CHANS is both a cause of interference, which biases inferences about causal effects, and a moderator of the causal effects themselves. No perfect solutions exist for satisfying excludability and interference assumptions in CHANS. To elucidate causal relationships in CHANS, multiple approaches will be needed for a given causal question, with the aim of identifying sources of bias in each approach and then triangulating on credible inferences. Within CHANS research, and sustainability science more generally, the path to accumulating an evidence base on causal relationships requires skills and knowledge from many disciplines and effective academic-practitioner collaborations.  more » « less
Award ID(s):
1715638
PAR ID:
10110174
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
12
ISSN:
0027-8424
Page Range / eLocation ID:
5311 to 5318
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ecologists seek to understand the intermediary ecological processes through which changes in one attribute in a system affect other attributes. Yet, quantifying the causal effects of these mediating processes in ecological systems is challenging. Researchers must define what they mean by a “mediated effect”, determine what assumptions are required to estimate mediation effects without bias, and assess whether these assumptions are credible for a study. To address these challenges, scholars in fields outside of ecology have made significant advances in mediation analysis over the past three decades. Here, we bring these advances to the attention of ecologists, for whom understanding mediating processes and deriving causal inferences are important for testing theory and developing resource management and conservation strategies. To illustrate both the challenges and the advances in quantifying mediation effects, we use a hypothetical ecological study. With this study, we show how common research designs used in ecology to detect and quantify mediation effects may have biases and how these biases can be addressed through alternative designs. Throughout the review, we highlight how causal claims rely on causal assumptions, and we illustrate how different designs or definitions of mediation effects can relax some of these assumptions. In contrast to statistical assumptions, causal assumptions are not verifiable from data, so we also describe procedures that researchers can use to assess the sensitivity of a study’s results to potential violations of its causal assumptions. The advances in causal mediation analyses reviewed herein will provide ecological researchers with approaches to clearly communicate the causal assumptions necessary for valid inferences and examine potential violations to these assumptions, which will enable rigorous and reproducible explanations of intermediary processes in ecology. 
    more » « less
  2. ABSTRACT Experiments have long been the gold standard for causal inference in Ecology. As Ecology tackles progressively larger problems, however, we are moving beyond the scales at which randomised controlled experiments are feasible. To answer causal questions at scale, we need to also use observational data —something Ecologists tend to view with great scepticism. The major challenge using observational data for causal inference is confounding variables: variables affecting both a causal variable and response of interest. Unmeasured confounders—known or unknown—lead to statistical bias, creating spurious correlations and masking true causal relationships. To combat this omitted variable bias, other disciplines have developed rigorous approaches for causal inference from observational data that flexibly control for broad suites of confounding variables. We show how ecologists can harness some of these methods—causal diagrams to identify confounders coupled with nested sampling and statistical designs—to reduce risks of omitted variable bias. Using an example of estimating warming effects on snails, we show how current methods in Ecology (e.g., mixed models) produce incorrect inferences due to omitted variable bias and how alternative methods can eliminate it, improving causal inferences with weaker assumptions. Our goal is to expand tools for causal inference using observational and imperfect experimental data in Ecology. 
    more » « less
  3. Nielsen, Rasmus (Ed.)
    Abstract Population genomic analyses of high-altitude humans and other vertebrates have identified numerous candidate genes for hypoxia adaptation, and the physiological pathways implicated by such analyses suggest testable hypotheses about underlying mechanisms. Studies of highland natives that integrate genomic data with experimental measures of physiological performance capacities and subordinate traits are revealing associations between genotypes (e.g., hypoxia-inducible factor gene variants) and hypoxia-responsive phenotypes. The subsequent search for causal mechanisms is complicated by the fact that observed genotypic associations with hypoxia-induced phenotypes may reflect second-order consequences of selection-mediated changes in other (unmeasured) traits that are coupled with the focal trait via feedback regulation. Manipulative experiments to decipher circuits of feedback control and patterns of phenotypic integration can help identify causal relationships that underlie observed genotype–phenotype associations. Such experiments are critical for correct inferences about phenotypic targets of selection and mechanisms of adaptation. 
    more » « less
  4. null (Ed.)
    In this paper we propose a causal modeling approach to intersectional fairness, and a flexible, task-specific method for computing intersectionally fair rankings. Rankings are used in many contexts, ranging from Web search to college admissions, but causal inference for fair rankings has received limited attention. Additionally, the growing literature on causal fairness has directed little attention to intersectionality. By bringing these issues together in a formal causal framework we make the application of intersectionality in algorithmic fairness explicit, connected to important real world effects and domain knowledge, and transparent about technical limitations. We experimentally evaluate our approach on real and synthetic datasets, exploring its behavior under different structural assumptions. 
    more » « less
  5. Abstract Because human and environmental systems in the Anthropocene are increasingly coupled, hydrologists and economists often find themselves studying the same systems from different vantage points. Here we argue that synthesis across economics and hydrology can help address two pressing sociohydrologic challenges: actionable prediction and the generation of transferable knowledge from place‐based studies. Specifically, we review (1) empirical methods and (2) theoretical approaches from economics and connect the two through a proposed iterative framework. First, we find that empirical methods for statistical analysis of natural and quasi‐experiments in economics can be leveraged to distinguish causal relations from mere correlations in complex and data scarce systems, which can help address the challenge of sociohydrologic prediction. Second, we find that economic theories based on rational choice can be used to decipher known paradoxes in water resources, which can help address the challenge of sociohydrologic knowledge generation. In both empirical and theoretical domains, specialized knowledge in hydrology remains critical to properly applying techniques from economics to coupled human‐water systems. We propose that linkages between the two fields highlight a large potential for interaction. 
    more » « less